Skip to main content

Time Dependent Variational Inequalities — Some Recent Trends

  • Chapter
Equilibrium Problems and Variational Models

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 68))

Abstract

In this paper we attempt to survey several classes of time dependent variational inequalities that model various constrained evolution problems, in particular with unilateral constraints encountered in applied sciences. Here we are mainly concerned with the challenging evolution problems where the state of the system lives in an infinite dimensional space; the wide field of differential inclusions in finite dimensional space is outside of the scope of the present paper. Also we refrain here from covering the literature on the existence and regularity theory of parabolic and hyperbolic evolution inequalities.

At first we address time dependent variational inequalities where time enters as an additional parameter in the variational inequality. This class of time dependent variational inequalities has been recently introduced to study certain time dependent traffic flow problems. In addition we draw the attention to work on constrained evolution problems that include the time history via memory terms.

Then we turn to time dependent variational inequalities that generalize classical ordinary differential equations. In particular, we report on recent extensions of the sweeping process introduced by Moreau. Moreover, we deal with projected dynamical systems in a Hilbert space framework. Quite recently, this class of time dependent variational inequalities has been introduced and studied in finite dimensions to treat various time dependent network problems in operations research, particularly in traffic science. It is shown that projected dynamical systems are equivalent to a class of differential inclusions that were already analysed twenty years ago.

Finally we deal with a central issue of evolution problems and equilibrium theory, namely the asymptotics of the time processes and their convergence to steady-state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. H. Attouch and A. Damlamian, Problèmes d’évolution dans les Hilberts et applications, J. Math. pures et appl., IX. Ser., 54, 1974, 53–74.

    MathSciNet  Google Scholar 

  3. J.-P. Aubin, Viability Theory, Birkhäuser, Basel, Boston, 1991.

    Google Scholar 

  4. J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin etc., 1984.

    Google Scholar 

  5. H. Benabdellah, C. Castaing and A. Salvadori, Compactness and discretization methods for differential inclusions and evolution problems, Atti Semin. Mat. Fis. Univ. Modena, 45, 1, 1997, 9–51.

    MathSciNet  Google Scholar 

  6. H. Benabdellah, C. Castaing, A. Salvadori and A. Syam, Nonconvex sweeping processes, J. Appl. Anal., 2, 2, 1996, 217–240.

    Article  MathSciNet  Google Scholar 

  7. J.M. Borwein and A.S. Lewis, Partially finite convex programming, part I: quasi relative interiors and duality theory, Math. Programming, 57, 1992, 15–48.

    Article  MathSciNet  Google Scholar 

  8. H. Brézis, Operateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  9. M. Brokate, Elastoplastic constitutive laws of nonlinear kinematic hardening type, Functional analysis with current applications in science, technology and industry, Brokate, M. and Siddiqi, A. H., Longman, Pitman Research Notes in Mathematics Series, 377, 1998, 238–272.

    Google Scholar 

  10. C. Carstensen and J. Gwinner, A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems, Ann. Mat. Pura Appl., 177, 1999, 363–394.

    Article  MathSciNet  Google Scholar 

  11. C. Castaing and M.D.P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math., 54, 4, 1997, 485–507.

    Google Scholar 

  12. R. Cominetti and O. Alemany, Steepest descent evolution equations: asymptotic behavior of solutions and rate of convergence, Trans. Am. Math. Soc., 351, 12, 1999, 4847–4860.

    Article  MathSciNet  Google Scholar 

  13. B. Cornet, Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96, 1983, 130–147.

    Article  MathSciNet  Google Scholar 

  14. P. Daniele and A. Maugeri, On dynamical equilibrium problems and variational inequalities, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Kluwer Academic Publishers, F. Giannessi-A. Maugeri-P. Pardalos Eds., 2001, 59–69.

    Google Scholar 

  15. P. Daniele, A. Maugeri and W. Oettli, Time-dependent variational inequalities, J. Optim. Theory Appl., 103, 3, 1999, 543–555.

    Article  MathSciNet  Google Scholar 

  16. K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin. New York, 1992.

    Book  Google Scholar 

  17. M. De Luca, Existence of solutions for a time-dependent quasi-variational inequality, Proceedings of the workshop on equilibrium problems with side constraints. Lagrangean theory and duality II, F. Giannessi et al. eds., Suppl. Rend. Circ. Mat. Palermo, II Ser. 48, 1997, 101–106.

    Google Scholar 

  18. P. Dupuis, Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets, Stochastics, 21, 1987, 63–96.

    MathSciNet  Google Scholar 

  19. P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44, 1993, 9–42.

    Article  MathSciNet  Google Scholar 

  20. S.D. Flam, Solving convex programs by means of ordinary differential equations, Math. Oper. Res., 17, 1992, 290–302.

    Article  MathSciNet  Google Scholar 

  21. S.D. Flam and A. Seeger, Solving cone-constrained convex programs by differential inclusions, Math. Program., 65A, 1, 1994, 107–121.

    Article  MathSciNet  Google Scholar 

  22. L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999.

    Google Scholar 

  23. J. Gwinner, A remark on the asymptotic behaviour of parabolic variational inequalities and their finite element approximation by the Courant element, Finite Element Methods — Fifty Years of the Courant Element, M. Krizek and P. Neittaanmäki eds., Marcel Dekker, 1994, 235–242.

    Google Scholar 

  24. J. Gwinner, Stability of monotone variational inequalities with various applications, Variational Inequalities and Network Equilibrium Problems, F. Giannessi and A. Maugeri eds., Plenum Publishing, 1995, 123–142.

    Google Scholar 

  25. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities, J. Math. Soc. Japan, 29, 1977, 615–631.

    Article  MathSciNet  Google Scholar 

  26. A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, Studies in Mathematics and its Applications, 6, North-Holland, Amsterdam, 1979.

    Google Scholar 

  27. P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakkótosho, Tokyo, 1996.

    MATH  Google Scholar 

  28. P. Krejci, Evolution variational inequalities and multidimensional hysteresis operators, Nonlinear differential equations, Pavel Drabek et al. eds., Chapman & Hall/CRC, Res. Notes Math., 404, 1999, 47–110.

    Google Scholar 

  29. M. Kunze and M.D.P. Monteiro Marques, An introduction to Moreau’s sweeping process, Impacts in Mechanical Systems. Analysis and Modelling, Brogliato, B. ed., Springer, 551, Lect. Notes Physics, 2000, to appear.

    Google Scholar 

  30. M. Kunze and M.D.P.Monteiro Marques, Yosida-Moreau regularization of sweeping processes with unbounded variation, J. Differ. Equations, 130, 2, 1996, 292–306.

    Article  Google Scholar 

  31. M. Kunze and M.D.P. Monteiro Marques, Existence of solutions for degenerate sweeping processes, J. Convex Anal., 4, 1, 1997, 165–176.

    MathSciNet  Google Scholar 

  32. M. Kunze and M.D.P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5, 1, 1997, 57–72.

    Article  MathSciNet  Google Scholar 

  33. M. Kunze and M.D.P. Monteiro Marques, On parabolic quasi-variational inequalities and state-dependent sweeping processes, Topol. Methods Nonlinear Anal., 12, 1, 1998, 179–191.

    MathSciNet  Google Scholar 

  34. M. Kunze and M.D.P. Monteiro Marques, On the discretization of degenerate sweeping processes, Port. Math., 55, 2, 1998, 219–232.

    Google Scholar 

  35. A. Maugeri, Monotone and nonmonotone variational inequalities, Proceedings of the workshop on equilibrium problems with side constraints. Lagrangean theory and duality II, F. Giannessi et al. eds., Suppl. Rend. Circ. Mat. Palermo, II. Ser. 48, 1997, 179–184.

    Google Scholar 

  36. M.D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhäuser, Basel, Boston, 1993.

    Google Scholar 

  37. J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations, 26, 1977, 347–374.

    Article  MathSciNet  Google Scholar 

  38. J.J. Moreau, Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg., 177, 3–4, 1999, 329–349.

    Article  MathSciNet  Google Scholar 

  39. A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Kluwer, Boston, Dordrecht, 1996.

    Google Scholar 

  40. J. Naumann, On a class of variational inequalities of Volterra type, Rend. Mat., VI. Ser., 11, 2, 1978, 161–186.

    MathSciNet  Google Scholar 

  41. J. Naumann, On a class of first-order evolution inequalities arising in heat conduction with memory, SIAM J. Math. Anal., 10, 6, 1979, 1144–1160.

    Article  MathSciNet  Google Scholar 

  42. W. Oettli and D. Schläger, Generalized vectorial equilibria and generalized monotonicity, Functional analysis with current applications in science, technology and industry, Brokate, M. and Siddiqi, A. H. eds., Longman, Pitman Research Notes in Mathematics Series, Harlow, Essex, UK, 377, 1998, 145–154.

    Google Scholar 

  43. R.R. Phelps, Metric projection and the gradient projection method in Banach spaces, SIAM J. Control Optim., 23, 1985, 973–977.

    Article  MathSciNet  Google Scholar 

  44. L. Prigozhin, Variational model of sandpiles growth, European J. Appl. Math., 7, 1996, 225–235.

    MathSciNet  Google Scholar 

  45. L. Prigozhin, On the Bean critical-state model in superconductivity, European J. Appl. Math., 7, 1996, 237–247.

    MathSciNet  Google Scholar 

  46. L. Prigozhin, The Bean model in superconductivity: Variational formulation and numerical solution, J. Comput. Phys., 129, 1, 1996, 190–200.

    Article  MathSciNet  Google Scholar 

  47. S. Reich and A.J. Zaslayski, Asymptotic behavior of dynamical systems with a convex Lyapunov function, J. Nonlinear Convex Anal., 1, 1, 2000, 107–113.

    MathSciNet  Google Scholar 

  48. J.-F. Rodrigues, Some remarks on the asymptotic behaviour of strong solutions to monotone parabolic variational inequalities, Rend. Math. Appl., VII. Ser., 4, 1984, 458–470.

    Google Scholar 

  49. J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987.

    Google Scholar 

  50. J. Steinbach, Evolutionary variational inequalities with a Volterra term, Numer. Funct. Anal. Optimization, 12, 3 & 4, 1991, 395–411.

    Article  MathSciNet  Google Scholar 

  51. J. Steinbach, On a variational inequality containing a memory term with an application in electro-chemical machining, J. Convex Anal., 5, 1, 1998, 63–80.

    MathSciNet  Google Scholar 

  52. N.X. Tan, Quasi-variational inequality in topological linear locally convex Hausdorff spaces, Math. Nachr., 122, 1985, 231–245.

    Article  MathSciNet  Google Scholar 

  53. A.A. Vladimirov, Nonstationary dissipative evolution equations in a Hilbert space, Nonlinear Anal. T. M. A., 17, 1991, 499–518.

    Article  Google Scholar 

  54. A.A. Vladimirov, V.S. Kozyakin, N.A. Kuznetsov, and A. Mandelbaum, An investigation of the dynamic complementarity problem by methods of the theory of desynchronized systems. (English. Russian original), Russ. Acad. Sci., Dokl., Math., 47, No. 2, 1993, 169–173.

    MathSciNet  Google Scholar 

  55. E.H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, Contributions to Nonlinear Functional Analysis, Zarantonello, E. H. ed., Academic Press, 1971, 237–424.

    Google Scholar 

  56. D. Zhang and A. Nagurney, On the stability of projected dynamical systems, J. Optim. Theory Appl., 85, 1995, 97–124.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gwinner, J. (2003). Time Dependent Variational Inequalities — Some Recent Trends. In: Daniele, P., Giannessi, F., Maugeri, A. (eds) Equilibrium Problems and Variational Models. Nonconvex Optimization and Its Applications, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0239-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0239-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7955-3

  • Online ISBN: 978-1-4613-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics