Skip to main content

Dynamic Properties from Utricular Afferents

  • Chapter
The Vestibular System: Function and Morphology

Abstract

Otolithic organs have been classically considered as accelerometers with a practically flat gain-frequency curve (26). However, a closer look into the responses recorded from the otolithic afferent nerves reveals a more complex input-output relationship (9,10,22,23). Otolithic organs do not respond to changes in the acceleration vector in a linear way: they are sensitive to high frequency vibrations in a nonlinear fashion (21). Linear accelerations of the same amplitude but opposite sense elicit different responses from otolithic organs (9). Because of adaptation (23), otolithic organs can respond phasically to a sustained mechanical stimulus, and as a result their gain frequency curves have a positive slope. Furthermore, all the afferents innervating a given organ do not respond identically to the same stimulus (23). This complexity makes it difficult to consider the otolithic organs as simple accelerometers, and makes a characterization of the different afferents neeessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanks, R.H.I, and Precht, W.: Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. 25:369, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Budelli, R. and Macadar, O.: Stato-acoustic properties of utricular afferents. J. Neurophysiol. 42:1479, 1979.

    PubMed  CAS  Google Scholar 

  3. Cazin, L. and Lannou, J.: Response du saccule a’ la stimulation vibratoire directe de la macule, chez la grenouille. C. R. Soc. Biol. (Paris) 169:1067, 1975.

    CAS  Google Scholar 

  4. Cazin, L. and Lannou, J.: Two populations of afferent fibers in the saccular nerve of the frog (Rana esculenta). Brain Res. 1 14:501, 1976.

    Article  Google Scholar 

  5. Chapman, C.J. and Sand, O.: Field studies of hearing in two species of flatfish: Pleuronects platessa(L) and Limanda limanda(L) (Family Pleunectidae). Comp. Biochem. Physiol. 47A:371, 1974.

    Article  Google Scholar 

  6. Colnaghi, G.L.: Saccular potentials and their relationship to hearing in the goldfish Carassius auratus).Comp. Biochem. Physiol. 50A:605, 1973

    Google Scholar 

  7. Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41:391, 1961.

    PubMed  CAS  Google Scholar 

  8. de Vries, H.: The mechanics of the labyrinth otoliths. Acta Otolaryngol. 38:262, 1950.

    Article  Google Scholar 

  9. Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long duration centrifugal force. J. Neurophysiol. 39:970, 1976.

    PubMed  CAS  Google Scholar 

  10. Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 39:996, 1976.

    PubMed  CAS  Google Scholar 

  11. Goldberg, J. and Brown, P.B.: Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32:613, 1969.

    PubMed  CAS  Google Scholar 

  12. Goldberg, J. and Fernandez, C.: Vestibular mechanism. Ann. Rev. Physiol. 37:129, 1975.

    Article  CAS  Google Scholar 

  13. Kelly, J.C. and Nelson, D.R.: Hearing thresholds of the horn shark (Herodontus francisci). J. Acoust. Soc. Am. 58:905, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Kiang, N.Y.: Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, Mass., M.I.T. Press, 1965.

    Google Scholar 

  15. Lannou, J. and Cazin, L.: Response to tilting of the fibers of the frog’s saccular nerve. Pfluegers Arch. 366:143, 1976.

    Article  CAS  Google Scholar 

  16. Lippold, O.C.J., Nicholls, J.G., and Redfearn, J.W.T.: Electrical and mechanical factors in the adaptation of a mammalian muscle spindle. J. Physiol. (Lond.) 153:209, 1960.

    CAS  Google Scholar 

  17. Loe, P.R., Tomko, D.L., and Werner, G.: The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. (Lond.) 230:29, 1973.

    CAS  Google Scholar 

  18. Loewenstein, W.R. and Mendelsohn, M.: Components of receptor adaptation in a pacinian corpuscle. J. Physiol. (Lond.) 177:377, 1965.

    PubMed  CAS  Google Scholar 

  19. Lowenstein, O.: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth in the thornback ray (Raja clavata). J. Physiol. (Lond.) 127:104, 1955.

    PubMed  CAS  Google Scholar 

  20. Lowenstein, O. and Roberts, T.D.M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. 1 10:392, 1949.

    Google Scholar 

  21. Lowenstein, O. and Roberts, T.D.M.: The localization and analysis of the response to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114:471, 1951.

    PubMed  CAS  Google Scholar 

  22. Macadar, O., Wolfe, G.E., Budelli, R., and Segundo, J.P.: Multivalued stimulus-response relation in isolated elasmobranch utricles. Biol. Cybern, (in preparation).

    Google Scholar 

  23. Macadar, O., Wolfe, G.E., O’Leary, D.P., and Segundo, J.P.: Response of the elasmobranch utricle to maintained spatial orientation, transitions, and jitter. Exp. Brain Res. 22:1, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Mardia, K.V.: Statistics of Directional Data. New York, Academic Press, 1972.

    Google Scholar 

  25. Nakajima, S. and Onodera, K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. (Lond.) 200:161, 1969.

    PubMed  CAS  Google Scholar 

  26. Young, L.R.: Role of the vestibular system in posture and movement. In Mountcastle, V.B. (ed.): Medical Physiology. St. Louis, Mosby, 1974, pp. 704–721.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Budelli, R., Macadar, O. (1981). Dynamic Properties from Utricular Afferents. In: Gualtierotti, T. (eds) The Vestibular System: Function and Morphology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5902-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5902-2_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5904-6

  • Online ISBN: 978-1-4612-5902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics