Skip to main content

Investigation of Trace Amine Metabolism in the Central Nervous System through Measurements on Cerebrospinal Fluid

  • Chapter
Neurobiology of the Trace Amines

Abstract

The metabolism of trace amines in the CNS can be studied through measurement of their product acids in the CSF. Animal studies suggest that an appreciable amount of tryptamine in the brain is derived from the periphery and diffuses into the brain. The same is probably true for phenylethylamine. Phenylethylamine is metabolized in human brain at about the same rate as the biogenic amines and p-tyramine at about half that rate. Tryptamine metabolism is only somewhat slower, while m-tyramine metabolism is a quantitatively minor pathway. Tryptophan availability is an important controlling factor for tryptamine turnover while aromatic amino acid decarboxylase levels are important for both tryptamine and phenylethylamine. Unlike biogenic amine metabolism, trace amine metabolism does not seem to be influenced in any important way by the age or sex of the subject. Human brain tryptamine metabolism is increased by melatonin administration, possibly due to its action on the activity of aromatic amino acid decarboxylase. In narcolepsy and idiopathic hypersomnia CSF levels of the tryptamine metabolite, indoleacetic acid, and of dopamine, are low. As both tryptamine and dopamine are present in brain at the highest levels in the basal ganglia, this brain region is implicated in the pathophysiology of hypersomnia. CSF indoleacetic acid was elevated in hepatic coma, the elevation being related to the grade of coma. This is consistent with the trace amine/false transmitter hypothesis of hepatic coma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson G.M. and Purdy W.C. (1979) A liquid chromatograph- ic-fluorometric system for the analysis of indoles in physiological samples. Anal. Chem. 51, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Anton-Tay F., Sepulveda J., and Gonzalez S. (1970) Increase of brain pyridoxal phosphokinase activity following melatonin administration. Life Sci. 9, 1283–1288.

    Article  CAS  Google Scholar 

  • Baldessarini R.J. and Fischer J.E. (1977) Substitute and alternative neurotransmitters in neuropsychiatrie illness. Arch. Gen. Psychiat. 34, 958–964.

    PubMed  CAS  Google Scholar 

  • Davis B.A., Durden D.A., and Boulton A.A. (1982) Plasma concentrations of p and m-hydroxyphenylacetic acid and phenylacetic acid in humans: gas chromatographic- high resolution mass spectrometric analysis. J. Chromatogr. 230, 283–286.

    Google Scholar 

  • Durden D.A. and Philips S.R. (1980) Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 34, 1725–1732.

    Article  PubMed  CAS  Google Scholar 

  • Durden D.A. and Boulton A.A. (1981) Identification and distribution of m- and hydroxyphenylacetic acids in the brain of the rat. J. Neurochem. 36, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Durden D.A. and Boulton A.A. (1982) Identification and distribution of phenylacetic acid in the brain of the rat. J. Neurochem. 38, 1532–1536.

    Article  PubMed  CAS  Google Scholar 

  • Fellman J.H., Roth E.S., and Fujita T.S. (1976) Decarboxylation to tyramine is not a major route of tyrosine metabolism in mammals. Arch. Biochem. Biophys. 174, 562–567.

    Article  PubMed  CAS  Google Scholar 

  • Forn J. (1972) Active transport of 5-hydroxyindoleacetic acid by the rabbit choroid plexus in vitro; blockade of probenecid and metabolic inhibitors. Biochem. Pharmacol. 21, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Garelis E, Young S.N., Lai S. and Sourkes T.L. (1974) Monoamine metabolites in lumbar CSF: The question of their origin in relation to clinical studies. Brain Res. 79, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Héry F., Simonnet G., Bourgoin S., Soubriö P., Artand F., Hamon M., and Glowinski J. (1979) Effect of nerve activity on the in vivo release of (3H)serotonin continuously formed from L-(3H)tryptophan in the caudate nucleus of the cat. Brain Res. 169, 317–334.

    Article  PubMed  Google Scholar 

  • Houslay M.D., Tipton K.F., and Youdim M.B.H. (1976) Multiple forms of monoamine oxidase: Fact and artefact. Life Sci. 19, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Ichiyama A., Nakamura S., Nishizuka Y., and Hayaishi O. (1970) Enzymic studies on the biosynthesis of serotonin in mammalian brain. J. Biol. Chem. 245, 1699–1709.

    PubMed  CAS  Google Scholar 

  • Isaac L. (1973) Temperature alteration of monoamine metabolites in cerebrospinal fluid. Nature (New Biol.) 243, 269–271.

    CAS  Google Scholar 

  • Karoum F., Gillin J.C., Wyatt R.J., and Costa, E. (1975) Mass-fragmentography of nanogram quantities of biogenic amine metabolites in human cerebrospinal fluid and whole rat brain. Biomed. Mass Spectr. 2, 183–189.

    CAS  Google Scholar 

  • Karoum F., Bunney W., Gillin J.C., Jimerson D., van Kämmen D., and Wyatt R.J. (1977) Effect of probenecid on the concentration of the lumbar cerebrospinal fluid acidic metabolites of tyramine, octopamine, dopamine and norepinephrine. Biochem. Pharmacol. 26, 629 - 632.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S. (1977) Phenylketonuria: biochemical mechanisms, in Advances in Neurochemistry, Vol. 2 ( Agranoff B.W. and Aprison M.H., eds.) pp. 1–132. Plenum Press, New York.

    Google Scholar 

  • Maas J.W., Kocsis J.H., Bowden C.L., Davis J.M., Redmond D.E., Hanin I., and Robin E. (1982) Pretreatment neurotransmitter metabolites and response to imipramine or amitriptyline treatment. Psychol. Med. 12, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Montplaisir J., de Champlain J., Young S.N., Missala K., Sourkes T.L., Walsh J., and Rgmillard G. (1982) Narcolepsy and idiopathic hypersomnia: biogenic amines and related compounds in CSF. Neurology 32, 1299–1302.

    CAS  Google Scholar 

  • Pedemonte W.A., Mosnaim A.D., and Bulat M. (1976) Penetration of phenylacetic acid across the blood-cerebrospinal fluid barrier. Res. Commun. Chem. Path. Pharmacol. 14, 111–116.

    CAS  Google Scholar 

  • Philips S.R., Rozdilsky B.G., and Boulton A.A. (1978) Evidence for the presence of m-tyramine, p-tyramine, tryptamine, and phenylethylamine in the rat brain and several areas of the human brain. Biol. Psychiat. 13, 51–57.

    PubMed  CAS  Google Scholar 

  • Sacks W., Vogel W.H., Nagatsu T., Lloyd K.G., and Sandler M. (1979) Is there dopa decarboxylase in human brain? in Catecholamines: Basic and Clinical Frontiers (Usdin E., Kopin I.J., and Barchas J., eds.) pp. 127–131. Pergamon Press, New York.

    Google Scholar 

  • Sandler M., Ruthven C.R.J., Goodwin B.L., et al. (1978) Raised cerebrospinal fluid phenylacetic acid concentration: preliminary support for the phenylethylamine hypothesis of schizophrenia? Commun. Psychopharmacol. 2, 199–202.

    PubMed  CAS  Google Scholar 

  • Sandler M., Ruthven C.R.J., Goodwin B.L., and Coppen A. (1979) Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin. Chim. Acta 93, 169–171.

    Article  PubMed  CAS  Google Scholar 

  • van der Poel F.W., van Praag H.M., and Korf J. (1977) Evidence for a probenecid-sensitive transport system of acid monoamine metabolites from the spinal subarachnoid space. Psychopharmacology 52, 35–40.

    Article  PubMed  Google Scholar 

  • Warsh J.J., Chan P.Q., Dodse D.D., Coscina D.V., and Stancer H.C. (1977) Gas chromatographic-mass fragmentographic determination of indole-3-acetic acid in rat brain. J. Neurochem. 29, 955–958.

    Article  PubMed  CAS  Google Scholar 

  • Warsh J.J., Coscina D.V., Godse D.D., and Chan P.W. (1979) Dependence of brain tryptamine formation on tryptophan availability. J. Neurochem. 32, 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  • Wolfson L.I., Katzman R., and Escriva A. (1974) Clearance of amine metabolites from the cerebrospinal fluid: the brain as a “sink”. Neurology (Minneap.) 24, 772–779.

    CAS  Google Scholar 

  • Young S.N. and Lai S. (1980) CNS tryptamine metabolism in hepatic coma. J. Neural Transm. 47, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Young S.N., Anderson G.M., Gauthier S., and Purdy W.C. (1980a) The origin of indoleacetic acid and indole- propionic acid in rat and human cerebrospinal fluid. J. Neurochem. 34, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Young S.N., Anderson G.M., and Purdy W.C. (1980b) Indole- amine metabolism in rat brain studied through measure-ments of tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in cerebrospinal fluid. J. Neurochem. 34, 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Young S.N., Gauthier S., Anderson G.M., and Purdy W.C. (1980c) Tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in human cerebrospinal fluid: inter-relationships and the influence of age, sex, epilepsy and anticonvulsant drugs. J. Neuro1. Neurosurg. Psychiat. 43, 438–445.

    Article  CAS  Google Scholar 

  • Young S.N. and Gauthier S. (1981) Effect of tryptophan administration on tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in human lumbar and cisternal cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat. 44, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Young S.N., Davis B.A., and Gauthier S. (1982) Precursors and metabolites of phenylethylamine, m and p-tyramine and tryptamine in human lumbar and cisternal cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat. 45, 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Young S.N., Gauthier S., Kiely M.E., Lal S., and Brown G.M. (1983) Effect of oral melatonin administration on melatonin, 5-hydroxyindoleacetic acid, indoleacetic acid and cyclic nucleotides in human cerebrospinal fluid. In Preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Humana Press Inc.

About this chapter

Cite this chapter

Young, S.N. (1984). Investigation of Trace Amine Metabolism in the Central Nervous System through Measurements on Cerebrospinal Fluid. In: Boulton, A.A., Baker, G.B., Dewhurst, W.G., Sandler, M. (eds) Neurobiology of the Trace Amines. Humana Press. https://doi.org/10.1007/978-1-4612-5312-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5312-9_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9781-9

  • Online ISBN: 978-1-4612-5312-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics