Skip to main content

Polyphosphoinositides and Muscarinic Cholinergic and α1-Adrenergic Receptors in the Iris Smooth Muscle

  • Chapter
Inositol and Phosphoinositides

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 6))

Summary

An attempt was made in this brief review first to recount some of our early studies which culminated in the characterization of the polyphosphoinositide (phosphatidylinositol 4-monophosphate, PIP and phosphatidylinositol 4,5-bisphosphate, PIP2) effect in the iris smooth muscle, and second to present more recent data on the rapid breakdown of 32 P-prelabeled polyphosphoinositide (PPI) and release of [3H]myo-inositol phosphates by carbachol (CCh) in this tissue. The PPI effect is defined as the agonist-stimulated breakdown of PIP2 into diacylglycerol, measured as labeled phosphatidate, and inositol trisphosphate (IP3). These early findings included: (1) the demonstration of an agonist-stimulated breakdown of PIP2 which occurred at relatively short time intervals (2.5–10 min), when compared to the phosphatidylinositol (PI) effect reported in a variety of tissues; (2) the demonstration of the PPI effect in vivo, in response to electrical stimulation of the sympathetic nerve of the eye; (3) the demonstration, through pharmacologic and adrenergic denervation supersensitivity studies that PIP2 breakdown is linked to muscarinic cholinergic and aladrenergic receptors; (4) the demonstration that phosphodiesteratic cleavage of PIP2 into diacylglycerol and I P3, by PIP2 phosphodiesterase, is the molecular mechanism underlying the PPI effect; (5) the demonstration of some requirement for \(C{{a}^{{{{2}^{ + }}}}}\), derived mainly from studies on the inhibitory effects of EGTA and \(C{{a}^{{{{2}^{ + }}}}}\) ionophore A23187 on this phenomenon; however, the recent finding that the cationophore-stimulated breakdown of PIP2 is blocked by prazosin leads us now to conclude that while the PPI effect in the iris needs some \(C{{a}^{{{{2}^{ + }}}}}\), it is not regulated by intracellular \(C{{a}^{{{{2}^{ + }}}}}\); (6) the demonstration of a close correlation between agonist-stimulated PIP2 breakdown and agonist-induced muscle contraction, which led us to suggest that the agonist-stimulated PIP2 breakdown is an early event in the pathway which leads from receptor activation to muscle response. Data are also presented which demonstrate that in the iris, the breakdown of labeled PIP2 and release of IP3 by CCh occur within 15 s; in contrast the release of IP occurred at longer time intervals (>1 min). Thus after incubation for 15 s with CCh there was 48% loss of 32P radioactivity from PIP2 in 32P-labeled iris, 81% increase in IP3 release and no change in the release of IP in iris prelabeled with [3H]inositol. These data suggest that agonist-stimulated PIP2 breakdown is probably involved in the mechanism of both the phasic (fast) and tonic (slow) components of the contractile response. Neither 2-deoxyglucose nor Li+, when added for short time intervals (10 min), had any influence on the PPI effect. In accord with our previous studies we conclude that the phosphodiesteratic cleavage of PIP2 is an early (initial) event in the pathway which leads from activation of \(C{{a}^{{{{2}^{ + }}}}}\)-mobilizing receptors to muscle response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Latif, A.A. (1974) Life Sci. 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  2. Abdel-Latif, A.A. (1983a) in: “Handbook of Neurochemistry”, Vol. 3, 2nd Ed., (A. Lajtha, ed.) pp. 91–131, Plenum Publishing Corp., New York.

    Google Scholar 

  3. Abdel-Latif, A.A. (1983b) in: “Biochemistry of the Eye” (R. E. Anderson, ed.) pp. 48–78, Am. Acad. Ophthalmol., San Francisco, California.

    Google Scholar 

  4. Abdel-Latif, A.A. and Akhtar, R.A. (1976) Biochem. Soc. Trans. 4, 317–321.

    PubMed  CAS  Google Scholar 

  5. Abdel-Latif, A.A. and Akhtar, R.A. (1982) in: “Phos-pholipide in the Nervous System, Vol. I: Metabolism”(L.A. Horrocks, G.B. AnselI and G. Porcellati, eds.)pp. 251–264, Raven Press, New York.

    Google Scholar 

  6. Abdel-Latif, A.A. and Smith, J.P. (1984) Canad. J. Biochem. Cell. Biol. 62, 170–177.

    Article  CAS  Google Scholar 

  7. Abdel-Latif, A.A., Green, K., Matheny, J.L.,McPherson, J.C. and Smith, J.P. (1975) Life Sci. 17, 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  8. Abdel-Latif, A.A., Owen, M.P. and Matheny, J.L. (1976) Biochem. Pharmacol. 25, 461–469.

    Article  PubMed  CAS  Google Scholar 

  9. Abdel-Latif, A.A., Akhtar, R.A. and Hawthorne, J.N. (1977) Biochem. J., 162, 61–73.

    PubMed  CAS  Google Scholar 

  10. Abdel-Latif, A.A. Akhtar, R.A. and Smith, J.P. (1978a), in: “Cyclitols and Phosphoinositides” (Wells, W.W. and Eisenberg, F., Jr., eds.) pp. 121–143, Academic Press, New York.

    Google Scholar 

  11. Abdel-Latif, A.A., Green, K., Smith, J.P., McPherson, J.C. and Matheny, J.L. (1978b) J. Neurochem. 30, 517–525.

    Article  PubMed  CAS  Google Scholar 

  12. Abdel-Latif, A.A., Green, K. and Smith, J.P. (1979) J. Neurochem. 32, 225–228.

    Article  PubMed  CAS  Google Scholar 

  13. Agranoff, B.W., Murthy, P. and Seguin, E.B. (1983) J. Biol. Chem. 258, 2076–2078.

    PubMed  CAS  Google Scholar 

  14. Akhtar, R.A. and Abdel-Latif, A.A. (1978a) J.Pharmacol. Exp. Ther. 204, 655–668.

    PubMed  CAS  Google Scholar 

  15. Akhtar, R.A. and Abdel-Latif, A.A. (1978b) Biochim. Biophys. Acta 527, 159–170.

    PubMed  CAS  Google Scholar 

  16. Akhtar, R.A. and Abdel-Latif, A.A. (1979) Gen.Pharmacol. 10, 445–450.

    Article  PubMed  CAS  Google Scholar 

  17. Akhtar, R.A. and Abdel-Latif, A.A. (1980) Biochem. J. 192783–791.

    Google Scholar 

  18. Akhtar, R.A. and Abdel-Latif, A.A. (1982) J.Neurochem. 39, 1374–1380.

    Article  PubMed  CAS  Google Scholar 

  19. Akhtar, R.A. and Abdel-Latif, A.A. (1983) Exp. Eye Res. 36103–112.

    Google Scholar 

  20. Akhtar, R.H. and Abdel-Latif, A.A. (1984) Biochem. J. 224291–300.

    Google Scholar 

  21. Akhtar, R.A., Taft, W.C. and Abdel-Latif, A.A. (1983) J. Neurochem. 411460–1468.

    Google Scholar 

  22. Allan, D. and Michell, R.H. (1978) Biochim. Biophys. Acta 508277–286.

    Google Scholar 

  23. Berridge, M.J. (1983) Biochem. J. 212, 849–858.

    PubMed  CAS  Google Scholar 

  24. Berridge, M.J., Downes, C.P. and Hanley, M.R. (1982) Biochem. J. 206, 587–595.

    PubMed  CAS  Google Scholar 

  25. Berridge, M.J., Dawson, R.M.C., Downes, C.P., Heslop, J.P. and Irvine, R.F. (1983) Biochem. J. 212, 473–482.

    PubMed  CAS  Google Scholar 

  26. Best, L. and Malaisse, W.J. (1983) Biochem. Biophys. Res. Commun. 1169–16.

    Google Scholar 

  27. Billah, M.M. and Lapetina, E.G. (1982) J. Biol. Chem.

    Google Scholar 

  28. -12708.

    Google Scholar 

  29. Buckley, J.T. and Hawthorne, J.N. (1972) J. Biol. Chem. 247, 7218–7223.

    PubMed  CAS  Google Scholar 

  30. Creba, J.A., Downes, C.P., Hawkins, P.T., Brewster, G., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 212, 733–747.

    PubMed  CAS  Google Scholar 

  31. Downes, P. and Michell, R.H. (1982) Cell Calcium 4, 467–502.

    Article  Google Scholar 

  32. Durell, J., Sodd, M.A. and Friedel, R.O. (1968) Life Sci. 7, 363–368.

    Article  PubMed  CAS  Google Scholar 

  33. Fisher, S.K. and Agranoff, B.W. (1981) J. Neurochem. 37, 968–977.

    Article  PubMed  CAS  Google Scholar 

  34. Fisher, S.K., Van Rooijen, L.A.A. and Agranoff, B.W. (1984) Trends Biochem. Sci. 9, 53–56.

    Article  CAS  Google Scholar 

  35. Gabella, G. (1975) J. Physiol. 249, 28P - 29 P.

    PubMed  CAS  Google Scholar 

  36. Griffin, H.D. and Hawthorne, J.N. (1978) Biochem. J. 176, 541–552.

    PubMed  CAS  Google Scholar 

  37. Grimes, M.J., Abdel-Latif, A.A. and Carrier, G.O. (1979) Biochem. Pharmacol. 28, 3213–3219.

    Article  PubMed  CAS  Google Scholar 

  38. Hallcher, L.M. and Sherman, W.R. (1980) J. Biol. Chem. 255, 10896–10901.

    PubMed  CAS  Google Scholar 

  39. Harrington, C.A. and Eichberg, J. (1983) J. Biol. Chem. 258, 2087–2090.

    PubMed  CAS  Google Scholar 

  40. Hawthorne, J.N. (1982) Nature 295, 281–282.

    Article  PubMed  CAS  Google Scholar 

  41. Hawthorne, J.N. (1983) Biosci. Reports 3, 887–904.

    Article  CAS  Google Scholar 

  42. Hulme, E.C., Berrie, C.P., Birdsall, N.J.M., Jameson,M. and Stockton, J.M. (1983) Eur. J. Pharmacol. 94, 59–72.

    Google Scholar 

  43. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A. andGispen, W.H. (1981) Biochem. J. 194283–291.

    Google Scholar 

  44. Kerr, D.S., Hansen, I.L. and Levy, M.M. (1983) Metab-olism, 32, 951–959.

    Article  CAS  Google Scholar 

  45. Kirk, C.J., Creba, J.A., Downes, C.P. and Michell,R.H. (1981) Biochem. Soc. Trans. 9, 377–379.

    Google Scholar 

  46. Koutouzov, S., Marche, P., Cloix, J.-F. and Myer, P.(1982) Am. J. Physiol. 11, H590 - H597.

    Google Scholar 

  47. Laychock, S.G. (1983) Biochem. J. 216, 101–106.

    PubMed  CAS  Google Scholar 

  48. Lin, S.-H. and Fain, J.N. (1981) Life Sci. 29, 1905–1912.

    Article  PubMed  CAS  Google Scholar 

  49. Litosch, I., Lin, S. and Fain, J.N. (1983) J. Biol. Chem. 258, 13727–13732.

    PubMed  CAS  Google Scholar 

  50. Martin, T.F.J. (1983) J. Biol. Chem. 258, 14816–14822.

    PubMed  CAS  Google Scholar 

  51. Michell, R.H. (1979) Trends Biochem. Sci. 4, 128–131.

    Article  CAS  Google Scholar 

  52. Michell, R.H. (1982) in: “Phospholipids in the Nervous System, Vol. 1: Metabolism” (Horrocks, L.A.,Ansel!, G.B. and Porcellati, G., eds.) pp. 315–325, Raven Press, New York.

    Google Scholar 

  53. Nishizuka, Y. (1983) Trends Biochem. Sci 8, 13–16.

    Article  CAS  Google Scholar 

  54. Okazaki, T., Sagawa, N., Okita, J.R., Bleasdale, J.E.

    Google Scholar 

  55. MacDonald, P.C. and Johnston, J.M. (1981) J. Biol.

    Google Scholar 

  56. Chem. 256, 7316–7321.

    Google Scholar 

  57. Peniston, J.T. (1982) Ann. N.Y. Acad. Sci. 402, 296–303.

    Google Scholar 

  58. Putney, J.W., Burgess, G.M., Halenda, S.P., McKinney, J.S. and Rubin, R.P. (1983) Biochem. J. 212, 483–488.

    PubMed  CAS  Google Scholar 

  59. Rebecchi, M. and Gershengorn, M.C. (1983) Biochem. J. 216, 287–294.

    PubMed  CAS  Google Scholar 

  60. Rhodes, D., Prpic, V., Exton, J.H. and Blackmore, P.F. (1983) J. Biol. Chem. 258, 2770–2773.

    PubMed  CAS  Google Scholar 

  61. Rosenberger, L.B. and Triggle, D.J. (1979) Canad. J. Physiol. Pharmacol. 57, 348–358.

    Article  CAS  Google Scholar 

  62. Schacht, J. and Agranoff, B.W. (1974) J. Biol. Chem. 249, 1551–1557.

    PubMed  CAS  Google Scholar 

  63. Somerharju, P., van Paridon, P. and Wirtz, K.W.A. (1983) Biochim. Biophys. Acta 731, 186–195.

    Article  PubMed  CAS  Google Scholar 

  64. Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I. (1983) Nature 306, 67–69.

    Article  PubMed  CAS  Google Scholar 

  65. Taft, W.C., Abdel-Latif, A.A. and Akhtar, R.A. (1980) Biochem. Pharmacol. 29, 2713–2720.

    Article  PubMed  CAS  Google Scholar 

  66. Thomas, A.P., Marks, J.S., Coll, K.E. and Williamson, J.R. (1983) J. Biol. Chem. 258, 5716–5725.

    PubMed  CAS  Google Scholar 

  67. Volpi, M., Yassin, R., Naccache, P.H. and Sha’afi, R.I. (1983) Biochem. Biophys. Res. Commun. 112, 957–964.

    Article  PubMed  CAS  Google Scholar 

  68. Warenycia, M.W. and Vohra, M.M. (1983) Canad. J. Physiol. Pharmacol. 61, 97–101.

    Google Scholar 

  69. Weiss, S.J., McKinney, J.S. and Putney, J.W. (1982) Biochem. J. 206, 555–560.

    PubMed  CAS  Google Scholar 

  70. Yousufzai, S.Y.K. and Abdel-Latif, A.A. (1983) Exp. Eye Res. 37, 279–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this chapter

Cite this chapter

Abdel-Latif, A.A., Smith, J.P., Akhtar, R.A. (1985). Polyphosphoinositides and Muscarinic Cholinergic and α1-Adrenergic Receptors in the Iris Smooth Muscle. In: Bleasdale, J.E., Eichberg, J., Hauser, G. (eds) Inositol and Phosphoinositides. Experimental Biology and Medicine, vol 6. Humana Press. https://doi.org/10.1007/978-1-4612-5184-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5184-2_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9602-7

  • Online ISBN: 978-1-4612-5184-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics