Skip to main content

Studies on Skinned Fiber Preparations

  • Chapter
Calcium and Contractility

Part of the book series: Contemporary Biomedicine ((CB,volume 5))

Abstract

Smooth muscle contractility may be discussed in terms of the following basic processes (schematically shown in Fig. 1): (a) excitation of the cell membrane, (b) excitation-contraction (E-C) coupling, which includes the release of Ca2+ from internal stores and increased transmembrane Ca2+ transport resulting ultimately in an increase in the cytoplasmic free Ca2+ concentration, (c) the supply of ATP for contraction and its resynthesis by cell metabolism, and (d) the chemomechanical energy transformation with ATP hydrolysis, catalyzed by the myosin ATPase as the driving force. To these basic processes one might add for consideration the homeostatic mechanisms controlling osmotic pressure, salt concentration, pH, and so forth of the cytoplasm surrounding the contractile structures. Because of the inherently complex nature of the interactions among the above processes, experiments on intact muscle can provide only suggestive information regarding the contractile machinery itself. On the other extreme, studies of the contractile mechanism with isolated contractile proteins lack the structural integrity of the contractile and regulatory systems that could be of critical importance in the intact muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achazi, R. K. Phosphorylation of molluscan paramyosin. Pflügers Arch. 379: 179–201, 1979.

    Google Scholar 

  2. Adelstein, R. S. Calmodulin and the regulation of the actin—myosin interaction in smooth muscle and nonmuscle cells. Cell 30: 349–350, 1982.

    PubMed  CAS  Google Scholar 

  3. Adelstein, R. S., M. A. Conti, D. K. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’-5’ monophosphate dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.

    PubMed  CAS  Google Scholar 

  4. Adelstein, R. S., M. A. Conti, D. K. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’-5’ monophosphate dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.

    PubMed  CAS  Google Scholar 

  5. Amer, A. Mechanical characteristics of chemically skinned guinea-pig taenia coli. Pflügers Arch. 395: 277–284, 1982.

    Google Scholar 

  6. Baguet, F. and J. M. Gillis. The respiration of the anterior byssus retractor muscle of mytilus edulis (ABRM) after a phasic contraction. J. Physiol. (Lond.) 188: 67–82, 1967.

    CAS  Google Scholar 

  7. Baguet, F. and J. M. Gillis. Energy cost of tonic contraction in a lamelli-branch catch muscle. J. Physiol. (Lond.) 198: 127–143, 1968.

    CAS  Google Scholar 

  8. Bhalla, R. C., R. V. Sharma, and R.C. Gupta. Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. Biochem J. 203: 583–592, 1982.

    PubMed  CAS  Google Scholar 

  9. Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 607–718, 1979.

    Google Scholar 

  10. Bowen, W. J. Glycerol treated muscle as working model of contraction and diffusion of ATP through it. In: Biochemistry of Muscle Contraction. Ed. J. Gergely. Little, Brown and Company, Boston, 1964. pp 441–447.

    Google Scholar 

  11. Briggs, A. H. Characteristics of contraction in glycerinated uterine smooth muscle. Am. J. Physiol. 204: 739–742, 1963.

    PubMed  CAS  Google Scholar 

  12. Butler, T. M. and R.E. Davies. High-energy phosphates in smooth muscle. Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr., Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle. Bethesda: Am. Physiol. Soc. pp 237–252, 1980.

    Google Scholar 

  13. Butler, T. M. and M. J. Siegman. Chemical energy usage and myosin light chain phosphorylation in mammalian smooth muscle. Federation Proc. 42: 57–61, 1983.

    CAS  Google Scholar 

  14. Cassidy, P., P. E. Hoar, and W. G. L. Kerrick. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by 1351 ATPßS. J. Biol. Chem. 254: 11148–11153, 1979.

    PubMed  CAS  Google Scholar 

  15. Cassidy, P., P. E. Hoar, and W. G. L. Kerrick. Inhibition of Ca2+-activated tension and myosin light chain phosphorylation in skinned smooth muscle strips by the phenothiazines. Pflügers Arch. 387: 115–120, 1980.

    PubMed  CAS  Google Scholar 

  16. Cassidy, P. and W. G. L. Kerrick. Superprecipitation of gizzard actomyosin, and tension in gizzard muscle skinned fibers in the presence of nucleotides other than ATP. Biochim. Biophy. Acta. 705: 63–69, 1982.

    CAS  Google Scholar 

  17. Cassidy, P.S., W. G. L. Kerick, P. E. Hoar, and D. A. Malencik. Exogenous calmodulin increases Ca’ sensitivity of isometric tension activation and myosin phosphorylation in skinned smooth muscles. Pflügers Arch. 392: 115–120, 1981.

    PubMed  CAS  Google Scholar 

  18. Casteels, R. and L. Raeymaekers. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J. Physiol. 294: 51–68, 1979.

    PubMed  CAS  Google Scholar 

  19. Chacko, C. and A. Rosenfeld. Regulation of actin-activated ATP hydrolysis of arterial myosin. Proc. Natl. Acad. Sci. USA 79: 292–296, 1982.

    PubMed  CAS  Google Scholar 

  20. Chacko, C. and A. Rosenfeld. Regulation of actin-activated ATP hydrolysis of arterial myosin. Proc. Natl. Acad. Sci. USA 79: 292–296, 1982.

    PubMed  CAS  Google Scholar 

  21. Conti, M. A. and R. S. Adelstein. The relationship between calmodulin binding and phosphorylation of smooth muscle kinase by the catalytic subunit of 3’:5’ cAMP-dependent protein kinase. J. Biol. Chem. 256: 3178–3181, 1981.

    PubMed  CAS  Google Scholar 

  22. Cornelius, F. Tonic contraction and the control of relaxation in a chemically skinned molluscan smooth muscle. J. Gen. Physiol. 79: 821–834, 1982.

    PubMed  CAS  Google Scholar 

  23. Crosby, N. D., and J. Diamond. Effects of phenothiazines on calcium induced contractions of chemically skinned smooth muscle. Proc. West. Pharmacol. Soc. 23: 335–338, 1980.

    PubMed  CAS  Google Scholar 

  24. Crow, M. T. and M. J. Kushmerick. Phosphorylation of the myosin light chains of mouse fast-twitch muscle is associated with a reduction in the actomyosin turnover rate. Science 217: 835–837, 1982.

    PubMed  CAS  Google Scholar 

  25. Deth, R. and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J. Gen. Physiol. 69: 401–416, 1977.

    PubMed  CAS  Google Scholar 

  26. Diamond, J. Role of cyclic nucleotides in control of smooth muscle contraction. In: Advances in Cyclic Nucleotide Research. Eds.: George W. J. and Ignarro, L. J. Raven Press, N. Y., 1978, pp 327–340.

    Google Scholar 

  27. Diamond, J. and R. A. Janis. Increases in cyclic GMP levels may not mediate relaxant effects of sodium nitroprusside, verapamil, and hydralazine in rat vas deferens. Nature (Lond.) 271: 472–473, 1978.

    CAS  Google Scholar 

  28. Dillon, P. F., M. O. Askoy, S. P. Driska, and R. A. Murphy. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495–497, 1981.

    PubMed  CAS  Google Scholar 

  29. Donaldson, S. K. B. and W. G. L. Kerick. Characterization of the effects of Mgt+ on Cat+ and Sr2+ activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol. 66: 427–444, 1975.

    PubMed  CAS  Google Scholar 

  30. Ebashi, S., Y. Nonomura, S. Nakamura, H. Nakasone, and K. Kohama. Regulatory mechanism in smooth muscle: actin-linked regulation. Federation Proc. 41: 2863–2867, 1982.

    CAS  Google Scholar 

  31. Endo, J., T. Kitazawa, S. Yagi, M. Iino, and Y. Kabuta. Some properties of chemically skinned smooth muscle fibers. In: Excitation-Contraction Coupling in Smooth Muscle. Eds.: Casteels, R., Godfriand, T., and Rüegg, J. C. Elsevier-North Holland, Amsterdam, 1977, pp 199–210.

    Google Scholar 

  32. Endo, M., T. Kitazawa, and S. Yagi. Different features of responses of the sarcoplasmic reticulum in cardiac and smooth muscles. In: Muscle Contraction, Its Regulatory Mechanisms. : Ebashi et al. Japan Sci. Soc. Press, Tokyo, 1980, pp 447–463.

    Google Scholar 

  33. Fabiato, A. Skinned fibers from skeletal, cardiac and smooth muscles: introduction. Federation Proc. 41: 2223–2224, 1982.

    Google Scholar 

  34. Fabiato, A. and F. Fabiato. Calcium release from the sarcoplasmic reticulum. Circ. Res. 40: 1119–1129, 1977.

    Google Scholar 

  35. Fabiato, A. and F. Fabiato. Effects of pH on the myofilaments and sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. (Lond.) 276: 233–255, 1978.

    CAS  Google Scholar 

  36. Fabiato, A. and F. Fabiato. Calculator programs for computing the composition of the solutions containins multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75: 463–505, 1979.

    CAS  Google Scholar 

  37. Filo, R. S., D. F. Bohr, and J. C. Rüegg. Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science 147: 1581–1583, 1965.

    PubMed  CAS  Google Scholar 

  38. Gagelmann, M., U. Mrwa, G. Pfitzer, M. Troschka, C. Obst, R. Herrmann, and J. C. Rüegg. Comparison of force and myosin light chain phosphorylation in skinned smooth muscle fibers. J. Muscle Res. and Cell Motility, 3: 478, 1982.

    Google Scholar 

  39. Gardner, J. P. and J. DiSalvo. Temporal relations between isometric force and myosin light chain (MLC) phosphorylation in skinned porcine carotid arteries. Federation Proc. 42: 736 (Abstract), 1983.

    Google Scholar 

  40. Gordon, A. R. Contraction of detergent-treated smooth muscle. Proc. Natl. Acad. Sci. USA 75: 3527–3530, 1978.

    PubMed  CAS  Google Scholar 

  41. Gratecos, D. and E. H. Fischer. Adenosine 5’-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem. Biophys. Res. Comm. 58: 960–967, 1974.

    PubMed  CAS  Google Scholar 

  42. Guth, K. and J. Junge. Low CaZ+ impedes cross-bridge detachment in chemically skinned taenia coli. Nature 300: 775–776, 1982.

    PubMed  CAS  Google Scholar 

  43. Guth, K., M. Gagelmann, and J. C. Rüegg. Skinned smooth muscle: time-course of force and ATPase activity during contraction cycle. Experientia 40: 174–176, 1984.

    PubMed  CAS  Google Scholar 

  44. Haeusler, G., J. G. Richards, and S. Thorens. Noradrenaline contractions in rabbit mesenteric arteries skinned with saponin. J. Physiol. (Lond.) 321: 537–556, 1981.

    CAS  Google Scholar 

  45. Hartshorne, D. and U. Mrwa. Regulation of smooth muscle actomyosin. Blood Vessels. 19: 1–18, 1982.

    PubMed  CAS  Google Scholar 

  46. Hasselbach, W. and O. Ledermair. Der Kontraktionzyklus der isolierten kontraktilen struckturen der Uterusmuskulatur and seine besonderheiten. Arch. Ges. Physiol. 267: 532–542, 1958.

    CAS  Google Scholar 

  47. Hellstrand, P. and A. Amer. Quantitative analysis of ATP turnover in relation to CaZ+-activated tension in chemically skinned guinea pig taenia coli. Biophys. J. 41: 247a (abstract), 1983.

    Google Scholar 

  48. Hellstrand, P., B. Johansson, and A. Ringberg. Influence of extracellular calcium on isometric force and velocity of shortening in depolarized venous smooth muscle. Acta Physiol. Scand. 84: 528–537, 1972.

    PubMed  CAS  Google Scholar 

  49. Hellstrand, P. G. and R. J. Paul. Vascular smooth muscle: relations between energy metabolism and mechanics. In: Vascular Smooth Muscle: Metabolic, Ionic and Contractile Mechanisms. Eds.: Crass, M. F. III and Barnes, C. D. Academic Press, New York, 1982, pp 1–36.

    Google Scholar 

  50. Hidaka, H., M. Naka, and T. Yamaki. Effect of novel specific myosin light chain kinase inhibitors on CaZ+-activated Mg2’ATPase of chicken gizzard actomyosin. Biochem. Biophys. Res. Commun. 90: 694–699, 1979.

    PubMed  CAS  Google Scholar 

  51. Hoar, P. E., W. G. L. Kerrick, and P. S. Cassidy. Chicken gizzard: relation between calcium-activated phosphorylation and contraction. Science 204: 503–506, 1979.

    PubMed  CAS  Google Scholar 

  52. Huxley, A. F. and R. M. Simmons. Proposed mechanism of force generation in striated muscle. Nature (Land.) 233: 533–538, 1971.

    CAS  Google Scholar 

  53. Iino, M. Tension responses of chemically skinned fiber bundles of the guinea-pig taenia coli under varied ionic environments. J. Physiol. (Lond.). 320: 449–467, 1981.

    CAS  Google Scholar 

  54. Itoh, T., H. Izumi, and H. Kuriyama. Mechanisms of relaxation induced by activation of ß-adrenoceptors in smooth muscle cells of the guinea pig mesenteric artery. J. Physiol. (Lond.). 326: 475–593, 1982a.

    CAS  Google Scholar 

  55. Itoh, T., M. Kajiware, K. Kitamura, and H. Kuriyama. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J. Physiol. (Lond.). 322: 107–125, 1982b.

    CAS  Google Scholar 

  56. Itoh, T., H. Suzuki, and H. Kuriyama. Effects of sodium depletion on contractions evoked in intact and skinned muscles of the guinea-pig mesenteric artery. Jap. J. Physiol. 31: 831–847, 1981.

    CAS  Google Scholar 

  57. Jewell, B. R. The nature of phasic and tonic responses of the anterior byssus retractor muscle of Mytilus. J. Physiol. (Lond.). 149: 154–177, 1959.

    CAS  Google Scholar 

  58. Julian, F. J. and R. L. Moss. Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres. J. Physiol. (Lond.). 311: 179–199, 1981.

    CAS  Google Scholar 

  59. Kerrick, W. G. L. Myosin light chain kinase in skinned fibers. In: Calcium and Cell Function, Vol. III. Academic Press, Inc., N. Y., 1980, pp 279–295.

    Google Scholar 

  60. Kerrick, W. G. L. Myosin light chain kinase in skinned fibers. In: Calcium and Cell Function, Vol. III. Academic Press, Inc., N. Y., 1980, pp 279–295.

    Google Scholar 

  61. Kerrick, W. G. L. and P. E. Hoar. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature 292: 253–255, 1981.

    PubMed  CAS  Google Scholar 

  62. Kerrick, W. G. L., P. E. Hoar, and P. S. Cassidy. Ca2’activated tension: the role of myosin light chain phosphorylation. Fed. Proc. 39: 1558–1563, 1980.

    PubMed  CAS  Google Scholar 

  63. Kramer, G. L. and J. G. Hardman. Cyclic nucleotides and blood vessel contraction. In: Handbook of Physiology, Vol. II, Vascular Smooth Muscle. Eds.: Bohr, D. F., Somylo, A. P., and Sparks, H. V. Jr. Amer. Physiol. Soc., 1980, pp 179–200.

    Google Scholar 

  64. Kukovetz, W. R., S. Holzmann, A. Wurm, and G. Poch. Evidence for cyclic GMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. Arch. Pharmacol. 310: 129–138, 1979.

    CAS  Google Scholar 

  65. Kushmerick, M. J. and M. T. Crow. Regulation of energetics and mechanics by myosin light chain phosphorylation in fast-twitch skeletal muscle. Federation Proc. 42: 14–20, 1983.

    CAS  Google Scholar 

  66. Levin, R. M. and B. Weiss. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J. Pharmac. Exp. Ther. 203: 454 459, 1979.

    Google Scholar 

  67. Mannherz, H. ATP-spaltung and ATP-diffusion in oscillierenden extrahierten muskelfasern. Pflügers Arch. 303: 230–248, 1968.

    PubMed  CAS  Google Scholar 

  68. Marston, S. B., R.M. Treven, M. Walters. Calcium ion-regulated thin filaments from vascular smooth muscle. Biochem. J. 185: 355–365, 1980.

    PubMed  CAS  Google Scholar 

  69. Marston, S. B. The regulation of smooth muscle contractile proteins. Prog. Biophys. Molec. Biol. 41: 1–1, 1982.

    Google Scholar 

  70. Meisheri, K.D., and J. C. Ruegg. Dependence of cyclic-AMP induced relaxation on Ca’ and calmodulin in skinned smooth muscle of guinea pig taenia coli. Pflügers Arch. 399: 315–320, 1983.

    PubMed  CAS  Google Scholar 

  71. Meisheri, K. D. and C. van Breemen. Effects of ß-adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP. J. Physiol. (Lond.) 331: 429–441, 1982.

    CAS  Google Scholar 

  72. Merkel, L., K. D. Meisheri, and G. Pfitzer. The variable relation between myosin light chain phsophorylation and actin-activated ATPase activity in chicken gizzard smooth muscle: modulation by tropomyosin. Eur. J. Biochem. 183: 429–434, 1984.

    Google Scholar 

  73. Morgan, J. P. and K. G. Morgan. Vascular smooth muscle: the first recorded Ca2+ transients. Pflügers Arch. 395: 75–77, 1982.

    PubMed  CAS  Google Scholar 

  74. Mrwa, U., I. Achtig, and J. C. Rüegg. Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels 11: 277–286, 1974.

    PubMed  CAS  Google Scholar 

  75. Mrwa, U., M. Troschka, and J. C. Ruegg. Cyclic AMP-dependent inhibition of smooth muscle actomyosin. FEBS Lett. 107: 371–373, 1979.

    PubMed  CAS  Google Scholar 

  76. Mueller, E. and C. van Breemen. Role of intracellular Ca’ sequestration in ß-adrenergic relaxation of smooth muscle. Nature (Lond.) 281: 682–683, 1979.

    CAS  Google Scholar 

  77. Murphy, R. A., M. O. Aksoy, P. F. Dillon, W. T. Gerthoffer, and K. E. Kamm. The role of myosin light chain phosphorylation in regulation of the cross-bridge cycle. Federation Proc. 42: 51–56, 1983.

    CAS  Google Scholar 

  78. Murphy, R. A., S. P. Driska, and D. M. Cohen. Variations in actin to myosin ratios and cellular force generation of vertebrate smooth muscles. In: Excitation—Contraction Coupling in Smooth Muscle. Eds. Casteels et al. Elsevier-North Holland, Amsterdam, 1977, pp 417–424.

    Google Scholar 

  79. Natori, R. Skinned fiber, past and present. In: Muscle Contraction, Its Regulatory Mechanisms. Ebashi et al. Japan Sci. Soc. Press, Tokyo, 1980, pp 19–29.

    Google Scholar 

  80. Paul, R. J. Smooth muscle: mechanochemical energy conversion, relations between metabolism and contractility. In: Physiology of the Gastrointestinal Tract. Johnson, L. R. et al., 1981, pp 269–288.

    Google Scholar 

  81. Paul, R. J. Coordination of metabolism and contractility in vascular smooth muscle. Federation Proc. 42: 62–66, 1983.

    CAS  Google Scholar 

  82. Paul, R. J., G. Doerman, C. Zeugner, and J. C. Rüegg. Dependence of unloaded shortening velocity (V15) on Ca’, calmodulin and contraction duration in “chemically skinned” smooth muscle. Circ. Res. 53: 342–351, 1983.

    PubMed  CAS  Google Scholar 

  83. Persechini, A. and D. J. Hartshorne. Cooperative behavior of smooth muscle myosin. Federation Proc. 41: 2868–2872, 1982.

    CAS  Google Scholar 

  84. Peterson, J. W. Relation of stiffness, energy metabolism and isometric tension in vascular smooth muscle. In: Mechanisms of Vasodilation. Eds.: Vanhoutte, P. M. and Leusen, I. Karger, Basel, 1978, pp 79–88.

    Google Scholar 

  85. Peterson, J. W. Vanadate ion inhibits actomyosin interaction in chemically skinned vascular smooth muscle. Biochem. Biophy. Res. Comm. 95: 1846–1853, 1980.

    CAS  Google Scholar 

  86. Peterson, J. W. Rate limiting steps in the tension development of freeze glycerinated vascular smooth muscle. J. Gen. Physiol. 79: 437–452, 1982.

    PubMed  Google Scholar 

  87. Pfitzer, G., J. W. Peterson, and J. C. Rüegg. Length dependence of calcium-activated isometric force and immediate stiffness in living and glycerol extracted vascular smooth muscle. Pflüegers Arch. 394: 174–181, 1982a.

    CAS  Google Scholar 

  88. Pfitzer, G. and J. C. Rüegg. Molluscan catch muscle: regulation and mechanics in living and skinned anterior byssus retractor muscle of Mytilus edulis. J. Comp. Physiol. 174: 137–142, 1982b.

    Google Scholar 

  89. Pfitzer, G., J. C. Rüegg, V. Flockerzi, and F. Hofmann. cGMPdependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett. 149: 171–175, 1982c.

    Google Scholar 

  90. Podolsky, R. J. and L. E. Teichholz. The relation between calcium and contraction kinetics is skinned muscle fibers. J. Physiol. (Lond.). 211: 19–35, 1970.

    CAS  Google Scholar 

  91. Portzehl, H., P. C. Caldwell, and J. C. Rüegg. The dependence of contraction and relaxation of muscle fibers from the crab Maia squinado on the internal concentration of free calcium ions. Biochim. Biophy. Acta. 79: 581–591, 1964.

    CAS  Google Scholar 

  92. Rüegg, J. C. Smooth muscle tone. Physiol. Rev. 51: 201–248, 1971.

    PubMed  Google Scholar 

  93. Rüegg, J. C., J. diSalvo, and R. J. Paul. Soluble relaxation factor from vascular smooth muscle: a myosin light chain phosphatase. Biochem. Biophy. Res. Comm. 106: 1126–1133, 1982.

    Google Scholar 

  94. Rüegg, J. C., J. diSalvo, and R. J. Paul. Soluble relaxation factor from vascular smooth muscle: a myosin light chain phosphatase. Biochem. Biophy. Res. Comm. 106: 1126–1133, 1982.

    Google Scholar 

  95. Rüegg, J. C. and R. J. Paul. Vascular smooth muscle: calmodulin and cyclic AMP dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers. Circ. Res. 50: 394–399, 1982.

    PubMed  Google Scholar 

  96. Rüegg, J. C., M. P. Sparrow, and U. Mrwa. Cyclic AMP mediated relaxation of chemically skinned fibers of smooth muscle. Pflügers Arch. 390: 198–201, 1981.

    PubMed  Google Scholar 

  97. Rüegg, J. C., M. P. Sparrow, and U. Mrwa. Cyclic AMP mediated relaxation of chemically skinned fibers of smooth muscle. Pflügers Arch. 390: 198–201, 1981.

    PubMed  Google Scholar 

  98. Rüegg, J. C. and H. H. Weber. Kontraktionszyklus and sperrtonus. In: Perspectives in Biology. Eds.: Cori, C. F., Fogilai, V. G., Leloir, L. F. and Ochoa, S. Elseiver, Amsterdam, 1963, pp 301–320.

    Google Scholar 

  99. Saida, K. Intracellular Ca release in skinned smooth mucle. J. Gen. Physiol. 80: 191–202, 1982.

    PubMed  CAS  Google Scholar 

  100. Saida, K. and Y. Nonomura. Characteristics of Cat+ and Mgt+ induced tension development in chemically skinned smooth muscle fibers. J. Gen. Physiol. 72: 1–14, 1978.

    PubMed  CAS  Google Scholar 

  101. Schädler, M. Proportionale aktivierung von ATPase aktivität and kontraktions-spannung durch calciumionen in isolierten kontraktilen strukturen. Pflügers Arch. ges. Physiol. 296: 70–90, 1967.

    Google Scholar 

  102. Schneider, M., M. Sparrow, and J. C. Rüegg. Inorganic phosphate promotes relaxation in chemically skinned smooth muscle of guinea-pig taenia coli. Experientia 37: 980–982, 1981.

    PubMed  CAS  Google Scholar 

  103. Schultz, K. D., E. Bohme, V. A. W. Kreye, and G. Schultz. Relaxation of hormonally stimulated smooth muscle tissues by the 8-bromo derivative of cyclic GMP. N.S. Arch. Pharmacol. 306: 1–9, 1979.

    CAS  Google Scholar 

  104. Schumacher, T. Zum mechanismus der ökonomischen haltleistung eines glatten muskels (Byssus retractor anterior, Mytilus edulis). Pflügers Arch. 331: 77–89, 1972.

    PubMed  CAS  Google Scholar 

  105. Sherry, J. M. F., A. Gorecka, M. O. Aksoy, R. Dabrowska, and D. J. Hartshorne. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry, N. Y. 17: 4411–4418, 1978.

    PubMed  CAS  Google Scholar 

  106. Siegman, M. J., T. M. Butler, S. U. Mooers, and R. E. Davies. Calcium-dependent resistance to stretch and stress relaxation in resting smooth muscles. Am. J. Physiol. 231: 1501–1508, 1976.

    PubMed  CAS  Google Scholar 

  107. Siegman, M. J., T. M. Butler, S.U. Moores, and R. E. Davies. Chemical energetics force development, force maintenance, and relaxation in mammalian smooth muscle. J. Gen. Physiol. 76: 609–629, 1980.

    PubMed  CAS  Google Scholar 

  108. Silver, P. J. and J. DiSalvo. Adenosine 3’:5’-monophosphate mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin. J. Biol. Chem. 254: 9951–9954, 1979.

    PubMed  CAS  Google Scholar 

  109. Silver, P. J., M. J. Holroyde, R. J. Solaro, and J. DiSalvo. Cat+, calmodulin, and cyclic AMP-dependent modulation of actin-myosin interactions in aorta. Biochim. Biophy. Acta. 674: 65–70, 1981.

    CAS  Google Scholar 

  110. Sobue, K., K. Morimoto, M. Inui, K. Kanda, and S. Kakiuchi. Control of actin-myosin interaction of gizzard smooth muscle by calmodulinand caldesmon-linked flip-flop mechanism. Biomedical Res. 3: 188–196, 1982.

    CAS  Google Scholar 

  111. Solaro, H. J., J. DiSalvo, and R. J. Paul. Coordination of metabolism and contractility by phosphorylation in cardiac, skeletal, and smooth muscle: introduction. Federation Proc. 42: 62–66, 1983.

    Google Scholar 

  112. Somlyo, A. P., A. V. Somlyo, H. Shuman, and M. Endo. Calcium and monovalent ions in smooth muscle. Federation Proc. 41: 2883–2890, 1982.

    CAS  Google Scholar 

  113. Sparrow, M. P., U. Mrwa, F. Hofmann, and J. C. Rüegg. Calmodulin is essential for smooth muscle contraction. FEBS Lett. 125: 141–145, 1981.

    PubMed  CAS  Google Scholar 

  114. Sparrow, M. P. G. Pfitzer, M. Gagelmann, and J. C. Rüegg. Effect of calmodulin, Cat+, and cAMP protein kinase on skinned trachael smooth muscle. Am. J. Physiol. 246: 308–314, 1984.

    Google Scholar 

  115. Spedding, M. Direct inhibitory effects of some calcium antagonists and trifluoroperazine on the contractile proteins in smooth muscle. Br. J. Pharmacol. 79: 225–231, 1983.

    PubMed  CAS  Google Scholar 

  116. Szent-Györgyi, A. Free energy relations and contraction of actomyosin. Biol. Bull. (Woods Hole). 96: 140–161, 1949.

    Google Scholar 

  117. Tsien, R. Y. and T. J. Rink. Neutral carrier ion-selective micro-electrodes for measurement of intracellular free calcium. Biochim. Biophy. Acta. 599: 623–638, 1980.

    CAS  Google Scholar 

  118. Twarog, B. M. Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. Cellular Comp. Physiol. 44: 141–164, 1954.

    CAS  Google Scholar 

  119. Ulbrecht, G., and M. Ulbrecht. Der isolierte arbeitscyclus glatter muskulatur. Zeitschrift für Naturforschung. 7: 434–443, 1952.

    Google Scholar 

  120. van Breeman. C. Calcium switch in vertebrate smooth muscle. Federation Proc. 41: 2863–2904, 1982.

    Google Scholar 

  121. Walsh, M. P., R. Bridenbaugh, D. J. Hartshorne, and W. G. L. Kerrick. Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca’. J. Biol. Chem. 257: 5987–5990, 1982.

    PubMed  CAS  Google Scholar 

  122. Walsh, M. P., R. Bridenbaugh, W. G. L. Kerrick, and D. J. Hartshorne. Gizzard Ca2’independent myosin light chain kinase: evidence in favor of the phosphorylation theory. Federation Proc. 42: 45–50, 1983.

    CAS  Google Scholar 

  123. Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification and characterization. Biochemistry 21: 1919–1925, 1982a.

    Google Scholar 

  124. Winegrad, S. Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid. J. Gen. Physiol. 58: 71–93, 1971.

    PubMed  CAS  Google Scholar 

  125. Yabu, H., I. Uchida, and E. Miyazaki. Participation of native tropomyosin in the ATP-contraction of an intestinal glycerinated muscle bundle. Jap. J. Physiol. 21: 465–473, 1971.

    CAS  Google Scholar 

  126. Yamamoto, T. and J. W. Herzig. Series elastic properties of skinned muscle fibres in contraction and rigor. Pflügers Arch. 373: 21–24, 1978.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this chapter

Cite this chapter

Meisheri, K.D., Rüegg, J.C., Paul, R.J. (1985). Studies on Skinned Fiber Preparations. In: Grover, A.K., Daniel, E.E. (eds) Calcium and Contractility. Contemporary Biomedicine, vol 5. Humana Press. https://doi.org/10.1007/978-1-4612-5172-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5172-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9596-9

  • Online ISBN: 978-1-4612-5172-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics