Skip to main content

Central Effects of Tyramine and PEA

Effects of 2-Phenylethylamine and Tyramine on Central Noradrenaline and Dopamine Systems: An Electrophysiological Study

  • Chapter
Neuropsychopharmacology of the Trace Amines

Abstract

Monoamine oxidase (MAO, E.C. 1.4.3.4.), which has been shown to exist in two forms (termed A and B), plays an essential role in the metabolism of tyramine and of 2-phenylethylamine (PEA). The two forms of the enzyme are defined according to their sensitivity to clorgyline; the A-form being highly sensitive and the B-form less sensitive. In contrast to clorgyline, FLA 336(+) is a reversible MAO-A inhibitor (1), while (−)deprenyl is an irreversible inhibitor with a high specificity for the MAO-B form (2). In most tissues tyramine is an equally well preferred substrate for both forms of the enzyme, while PEA is mainly a substrate for the B-form (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ask, A.-L., Hogberg, K., Schmidt, L., Kiessling, H. and Ross, S.B. (1982). 4-dimethylamino-alpha-methylphenylalkylamine (FLA 336), a selective inhibitor of the A form of monoamine oxidase in the rat brain. Biochem. Pharmacol. 31, 1401–1406.

    Article  PubMed  CAS  Google Scholar 

  2. Fowler, C.J., Callingham, B.A., Mantle, T.J. and Tipton, K.F. (1978). Monoamine oxidase A and B: a useful concept? Biochem. Pharmacol. 27, 97–101.

    Article  CAS  Google Scholar 

  3. Fowler, C.J., Oreland, L. and Callingham, B.A. (1981). The acetylenic monoamine oxidase inhibitors clorgyline, deprenyl, pargyline and J-508: their properties and applications. J. Pharmac. Pharm. 33, 341–347.

    Article  CAS  Google Scholar 

  4. Nakajima, T., Kakimoto, Y. and Sano, I. (1964). Formation of beta-phenyletylamine in mammalian tissue and its effect on motor activity in the mouse. J. Pharmacol. Exp. Ther. 143, 319–325.

    PubMed  CAS  Google Scholar 

  5. Borison, R.L., Mosnaim, A.D. and Sabelli, H.C. (1974). Biosynthesis of brain 2-phenylethylamine: Influence of decarboxylase inhibitors and d-amphetamine. Life Sci. 15, 1837–1848.

    Article  PubMed  CAS  Google Scholar 

  6. Sabelli, H.C. and Giardina, W.J. in Chemical Modulation of Brain Function, H. C. Sabelli, Ed. pp 225–259, Raven Press, New York (1973).

    Google Scholar 

  7. Boulton, A.A. (1979). Trace amines: Neurohumors (cytosolic, preand/or postsynaptic, secondary, indirect?) Behav. and Brain Sci. 2, 418.

    Article  Google Scholar 

  8. Potkin, S.G., Karoum, F., Chuang, L.W., Cannon-Spoor, H.E. and Philips, I. (1979). Phenylethylamine in paranoid chronic schizophrenia. Science 206, 470–471.

    Article  PubMed  CAS  Google Scholar 

  9. Karoum, F., Potkin, S.G., Murphy, D.L. and Wyatt, R.J.in Non-Catecholic-Phenylethylamines, part 2, A. D. Mosnaim and M. E. Wolf, Eds. pp 177–191, Marcel Dekker, Inc., New York (1980).

    Google Scholar 

  10. Reynolds, G.P., Phenylethylamine and schizophrenia - clinical and pharmacological results. in Neurobiology of the Trace Amines, A. A. Boulton, G. B. Baker, W. G. Dewhurst and M. Sandler, Eds. pp 515–523, Humana Press, Clifton, New Jersey (1984).

    Google Scholar 

  11. Fischer, E., Heller, B. and Miro, A.N. (1968). Beta-pheny-lethylamine in human urine. Arzneim. Forsch. 18, 1486.

    CAS  Google Scholar 

  12. Fischer, E., Spatz, H. and Saavedra, J.M. (1972). Uninary elimination of phenethylamine. Biol. Psychiatry. 5, 139–147.

    PubMed  CAS  Google Scholar 

  13. Murphy, D.L., Karoum, F., Alterman, I., Lipper, S. and Wyatt, R.J. Phenylethylamine, tyramine and other trace amines in patients with affective disorders: Association with clinical state and antidepressant drug treatment, in Neurobiology of the Trace Amines, A. A. Boulton, G. B. Baker, W. G. Dewhurst and M. Sandler, Eds. pp 499–514, Humana Press, Clifton, New Jersey (1984)

    Google Scholar 

  14. Sandler, M., Youdim, M.B.H. and Hannington, E. (1974). A phenylethylamine oxidising defect in migraine. Nature 250, 335–337.

    Article  PubMed  CAS  Google Scholar 

  15. Sandler, M. (1977). Transitory platelet monoamine oxidase deficit in migraine: Some reflectations. Headache 17, 153–158.

    Article  PubMed  CAS  Google Scholar 

  16. Paulos, M.A. and Tessel, R.E. (1982). Excretion of betaphenylethylamine is elevated in humans after profound stress. Science 215, 1127–1129.

    Article  PubMed  CAS  Google Scholar 

  17. Oldendorf, W.H. (1971). Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Amer. J. Physiol. 221, 1629–1639.

    PubMed  CAS  Google Scholar 

  18. Mantegazza, P. and Riva, M. (1963). Amphetamine-like activity of beta-phenylethylamine after a monoamine oxidase inhibitor in vivo. J. Pharm. Pharmac. 15, 472–478.

    Article  CAS  Google Scholar 

  19. Moja, E.A., Stoff, D.M. and Gillin, C.J. (1976). Dose-response effects of beta-phenylethylamine on stereotyped behaviour in pargyline-pretreated rats. Biol. Psychiatry 11, 731–742.

    PubMed  CAS  Google Scholar 

  20. Carlsson, A., Fuxe, K., Hamberger, B. and Lindqvist, M. (1966). Biochemical and histochemical studies on the effects of imipramin like drugs and amphetamine on central and peripheral catecholamine neurons. Acta Phys. Scand. 67, 481–497.

    Article  CAS  Google Scholar 

  21. Fuxe, K., Grobecker, H. and Jonsson, G. (1967). The effect of beta-phenylethylamine on central and peripheral monoamine-containing neurons. Eur. J. Pharmacol. 2, 202–207.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, D.M. (1975). Some further observations of the effect of beta-phenylethylamine on locomotoractivity in mice. Arzneim. Forsch. 25, 622–626.

    CAS  Google Scholar 

  23. Aghajanian, G.K., Cedarbaum, J.M. and Wang, R.Y. (1977). Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res. 136, 570–577.

    Article  PubMed  CAS  Google Scholar 

  24. Grace, A. and Bunney, B. (1984). The control of firing pattern in nigral dopamine neurons: Single spike firing. J. Neurosci. 11, 2866–2876 (1984).

    Google Scholar 

  25. Hanington, E. (1967). Preliminary report on tyramine headache. Brit. Med. J. 2, 550–551.

    Article  Google Scholar 

  26. Bruyn, G.W. The biochemical basis of migraine: A critique. In: Clinical Neuropharmacology, vol. 1, H.L. Klawans (Ed.) Raven Press, New York (1976).

    Google Scholar 

  27. Katayama, Y., Ueno, Y., Tsukiyama, T., Tsubokawa, T. (1981). Long-lasting suppression of firing of cortical neurons and decrease in cortical blood flow following train pulse stimulation of the locus coeruleus in the cat. (1981). Brain Res. 216, 173–179.

    Article  PubMed  CAS  Google Scholar 

  28. Aston-Jones, G. and Bloom, F.E. (1981a). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 879–886.

    Google Scholar 

  29. Aston-Jones, G. and Bloom, F.E. (1981b). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environment stimuli. J. Neurosci. 1, 887–900.

    PubMed  CAS  Google Scholar 

  30. Dahlof, C., Engberg, G. and Svensson, T.H. (1981). Effects of beta-adrenoceptor antagonists on the firing rate of noradrenergic neurons in the locus coeruleus of the rat. Naunyn-Schmiedeberg’s Arch. Pharmacol. 317, 26–30.

    CAS  Google Scholar 

  31. Engberg, G., Elam, M. and Svensson, T.H. (1982). Clonidine withdrawal: Activation of brain noradrenergic neurons with specifically reduced alpha -receptor sensitivity. Life Sci. 30, 235–243.

    Article  PubMed  CAS  Google Scholar 

  32. Weber, R.G. and Reinmuth, O.M. (1972). The treatment of migraine with propranolol. Neurology, 22, 366–369.

    PubMed  CAS  Google Scholar 

  33. Shafar, J., Tallett, E.R. and Knowlson, P.A. (1972). Evaluation of Clonidine in prophylaxis of migraine. Double-blind trial and follow-up. Lancet 1, 403–407.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this chapter

Cite this chapter

Oreland, L., Lundberg, PA., Engberg, G. (1985). Central Effects of Tyramine and PEA. In: Boulton, A.A., Maitre, L., Bieck, P.R., Riederer, P. (eds) Neuropsychopharmacology of the Trace Amines. Humana Press. https://doi.org/10.1007/978-1-4612-5010-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5010-4_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9397-2

  • Online ISBN: 978-1-4612-5010-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics