Skip to main content

The Ordered Structure of the Crystalline Lens

  • Conference paper
Development of Order in the Visual System

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

Abstract

The function of the crystalline lens is to focus light onto the retina. Consequently, the lens must be transparent. Lens transparency is in part made possible by the highly ordered arrangement of its uniform, terminally differentiated cells. It is an oversimplification to describe the lens as a biconvex spheroid comprised of crescent-like cells arranged end to end around a polar axis. To comprehend lens architecture it is necessary to consider embryonic lens development, the formation of primary and secondary fiber cells and the structure of lens sutures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barabaschew, P. 1892. Bietrag zur anatomie der lense. Albrecht von Graefe’s Archives zur Ophthalmologic 38: 1–14.

    Google Scholar 

  • Beebe, D. C., M.C.. Johnson, D. E. Feagans, and P. J. Compart. 1980. The mechanism of cell elongation during lens fiber cell differentiation. In “Ocular Size and Shape Regulation During Development.” ( Hilfer, S. R. and J. B. Sheffield., eds. ) pp 79–98.

    Google Scholar 

  • Benedetti, E. L., I. Dunia, C. J. Bentzel, A. J. M. Vermorken, M. Kibbelaar and H. Bloemendal. 1976. A portrait of plasma membrane specializations in lens epithelium and fibers. Biochim. et Biophys. Acta 457: 353–384.

    CAS  Google Scholar 

  • Bloemendal, H., A. Zweers, F. Vermorken, I. Dunia and E. L. Benedetti. 1972. The plasma membranes of eye lens fibers. Biochemical and structural characterization. Cell Differ. 1: 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Costello, M. J., T. J. Mcintosh, and J. D. Robertson. 1984. Square-array fiber cell membranes in the mammalian lens. In “Proceedings of the 42nd Annual Meeting of the Electron Microscopy Society of America.” ( Bailey, G. W., ed. ) pp 126–29.

    Google Scholar 

  • Coulombre, J. and A. J. Coulombre. 1963. Lens development: Fiber elongation and lens orientation. Science 142: 1489–490.

    Article  PubMed  CAS  Google Scholar 

  • de Jong, W. W. 1981. Evolution of lens and crystallines. In “Biology of the Eye Lens.” ( Bloemendal, H., ed) J. Wiley and Sons Inc., New York.

    Google Scholar 

  • Dickson, D. H. and G. W. Crock. 1972. Interlocking patterns of primate lens fibers. Inves. Ophthalmol. 13: 809–815.

    Google Scholar 

  • Dickson, D. H. and G. W. Crock. 1975. Fine structure of primate lens fibers. In “Cataract and Abnormalities of the Lens.” ( Bellows, J. G., ed.) pp 49–58. Grune and Stratton, New York.

    Google Scholar 

  • Duke-Elder, S. and K. C. Wybar. 1961. The refractive media: the lens. In “System of Ophthalmology.” vol. II. ( Duke-Elder, S., ed.) pp 309–324. The C. V. Mosby Co., St. Louis.

    Google Scholar 

  • Duke-Elder, S. and D. Abrams. 1970. The refraction of light. In “Systems of Ophthalmology.” vol. V. ( Duke-Elder, S., ed.) pp 74–78. C. V. Mosby Co. St. Louis.

    Google Scholar 

  • Farnsworth, P. N., S. C. J. Fu, P. G. Burke and I Bahaia. 1974. Ultrastructure of rat lens fibers. Invest. Ophthalmol. 13: 274–279.

    CAS  Google Scholar 

  • Gallati, J. 1923. Die relativen Dickenwerte von Rinde und Kern der menschlichen Linse in verschiedenen Lebensaltern. Atschr. f. Augenh. ( Berlin ) 51: 133–144.

    Google Scholar 

  • Goodenough, D. A., D. L. Paul and K. E. Culbert. 1978. Correlative gap junction ultrastructure. Birth Defects. 14 (2): 83–97.

    PubMed  CAS  Google Scholar 

  • Goodenough, D. A. 1979. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways. Invest. Ophthalmol. Vis. Sci. 11: 1104–1122.

    Google Scholar 

  • Hammar, H. 1965. An autoradiographic study on cell migration in the eye lens epithelium from normal and alloxan diabetic rats. Acta. Ophthal. (Kobenhavn) 14 (2): 83–97.

    Google Scholar 

  • Hanna, C. and J. E. O’Brien. 1961. Cell production and migration in the epithelial layer of the lens. Arch. Ophthal. ( Chicago ) 66: 103–107.

    CAS  Google Scholar 

  • Hansson, H. A. 1970. Scanning electron microscopy of lens of the adult rat. Z. Zellforsch. 107: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Harding, C. V., J. R. Reddan, N. J. Unakar and M. Bagchi. 1971. The control of cell division in the ocular lens. Int. Rev. Cytol. 31: 215–300.

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg, M. J., J. P. H. Wyse, and B. J. Lewis. 1976. Surface morphology of lens fiber from eyes of normal and microphthalmic (Browman) rats. Cell Tissue Res. 167: 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Hosch, G . 1901. Ein Fall von sog. cortikaler Hemianopsie und Alexie.Ztschr. f. Augenh. ( Berlin ) 5: 5–14.

    Google Scholar 

  • Hoyer, H. E. 1982. Scanning electron-microscopic study of lens fibers of the pig. Cell Tissue Res. 224 (1): 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Kuszak, J., H. Maisel and C. V. Harding. 1978. Gap junctions of chick lens fiber cells. Exp. Eye Res. 27: 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Kuszak, J., J. Alcala, and H. Maisel. 1980. The surface morphology of embryonic and adult chick lens-fiber cells. Am. J. Anat. 159: 95–410.

    Article  Google Scholar 

  • Kuszak, J. R. and J. L. Rae. 1982. Scanning electron microscopy of the frog lens. Exp. Eye Res. 35: 499–515.

    Article  PubMed  CAS  Google Scholar 

  • Kuszak, J. R., M. S. Macsai and J. L. Rae. 1983. Stereo scanning electron microscopy of the crystalline lens. Scan. Elec. Micr. 111: 1415–426.

    Google Scholar 

  • Kuszak, J. R., B. A. Bertram, M. S. Macsai and J. L. Rae. 1984. Sutures of the crystalline lens: A review. Scan. Elec. Micr. 111: 1369–1378.

    Google Scholar 

  • Kuwabara, T . 1970. Surface structure of the eye tissue. Proc. III Annual Scanning Electron Microscope Symposium, pp 185–192. Chicago.

    Google Scholar 

  • Kuwabara, T. 1975. The maturation of the lens cell: A morphological study. Exp. Eye Res. 20: 427–443.

    Article  PubMed  CAS  Google Scholar 

  • Langman, J. 1959a. The first appearance of specific antigens during the induction of the lens. J. Embryol. and Exper. Morphol. 7: 193–202.

    CAS  Google Scholar 

  • Langman, J. 1959b. Appearance of antigens during development of the lens. J. Bmbryol. and Exper. Morphol. 7: 264–274.

    CAS  Google Scholar 

  • McKeehan, M. S. 1951. Cytological aspects of embryonic lens induction in the chick. J. Exper. Zool. 117: 31–64.

    Article  Google Scholar 

  • Messier, B. and C. P. LeBlond. 1960. Cell proliferation and migration as revealed by radioautoradiography after injection of thymidine-3H into male rats and mice. Amer. J. Anat. 106: 247–285.

    Article  PubMed  CAS  Google Scholar 

  • Mikulicich, A. and R. W. Young. 1963. Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest. Ophthal. 2: 344–354.

    PubMed  CAS  Google Scholar 

  • Rabl, C. 1900. Concerning the structure and development of the lens. Atschr. F. Wissenensch. Zool. 66: 1–138.

    Google Scholar 

  • Rochon-Duvigneaud, A . 1943. “The Eyes and Vision of Vertebrates.” Masson and Cie., Paris.

    Google Scholar 

  • Sakuragawa, M., T. Kuwabara, J. Kinoshita, and H.N. Fukui. 1975. Swelling of the lens fibers. Exp. Eye Res. 21: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Smelser, G. K. 1965. Embryology and morphology of the lens. In: Symposium on the lens. J. E. Harris (Ed.), The C. V. Mosby Co., St. Louis, Mo., 22–34.

    Google Scholar 

  • van Doorenmaalen, W. J . 1981. “The developmental mechanics of the lens.” ( Bloemendal, W., ed. ) pp 415–435.

    Google Scholar 

  • Vogt, A . 1921. Interstitial spaces of lens under certain forms of illumination. Schweiz. Med. Wehnschr. 51: 265–268.

    Google Scholar 

  • Willenkens, B. and G. Vrensen. 1981. The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation. Albrecht von Graefe’s Arch. Klin. Exp. Ophthal. 216 (4): 275–289.

    Google Scholar 

  • Woerderman, M. W. 1962. Eye lens development and some of its problems. Proc. Koninklijke Nederlandse Akademie van Wetenschappen, series C, 65: 145.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kuszak, J.R., Bertram, B.A., Rae, J.L. (1986). The Ordered Structure of the Crystalline Lens. In: Hilfer, S.R., Sheffield, J.B. (eds) Development of Order in the Visual System. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4914-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4914-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9358-3

  • Online ISBN: 978-1-4612-4914-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics