Skip to main content

Studies on the Structure and Function of Ribosomal RNA

  • Chapter
Structure, Function, and Genetics of Ribosomes

Abstract

Our understanding of the structure and function of ribosomal RNA has evolved rapidly during the past few years. Complete primary structures for 16S, 23S, and 5S rRNA (and their analogs) from a wide range of organisms and organelles are now available, as are accurate secondary structure models that are helping us to understand the higher order folding of these molecules (reviewed in Woese et al., 1983; Brimacombe et al., 1983; Ebel et al., 1983; Noller, 1984). Current efforts in this area are focused on understanding tertiary and quaternary structure of rRNA and the nature of its involvement in protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barta, A., Steiner, G., Brosius, J., Noller, H.F., Kuechler, E. (1984). Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc. Nat. Acad. Sci. USA 81: 3607–3611.

    Article  PubMed  CAS  Google Scholar 

  • Brimacombe, R., Maly, P., Zwieb, C. (1983). The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog. Nucleic Acid Res. Mol. Biol 28: 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Celma, M.L., Monro, R.E., Vazquez, D. (1970). Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett. 6: 273–277.

    Article  CAS  Google Scholar 

  • Conner, B., Takano, T., Tanaka, S., Itakura, K., Dickerson, R.E. (1982). The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA. Nature 295: 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1968). The origin of the genetic code. J. Mol. Biol 38: 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S., Christensen, A., Garrett, R.A. (1983). Higher order structure in the 3′-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote. J. Mol. Biol 169: 249–279.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S., Prince, J.B., Noller, H.F. (1985). Evidence for functional interaction between domains II and V of 23 S ribosomal RNA from an erythromycin-resistant mutant. Proc. Nat. Acad. Sci. USA 82: 8330–8334.

    Article  PubMed  CAS  Google Scholar 

  • Dubin, D.T., Hsu Chen, C.C. (1983). The 3′-terminal region of mosquito mitochondrial small ribosomal subunit RNA: sequence and localization of methylated residues. Plasmid 9: 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Ebel, J.P., Branlant, C., Carbon, P., Ehresmann, B., Ehresmann, C., Krol, A., Stiegler, P. (1983). In Structure, Dynamics, Interactions and Evolution of Biological Macromolecules, ed. Helene, C. D. Reidel, Boston, pp. 177–193.

    Google Scholar 

  • Eperon, I.C., Janssen, J.W.G., Hoeijmakers, J.H., Borst, P. (1983). The major transcripts of the kinetoplast DNA of Trypanosoma brucei are very small ribosomal RNAs. Nucl. Acids Res 11: 105–125.

    Article  PubMed  CAS  Google Scholar 

  • Fox, G.F., Woese, C.R. (1975). 5S RNA secondary structure. Nature 256: 505–507.

    Google Scholar 

  • Ginzburg, I., Miskin, R., Zamir, A. (1973). N-ethyl maleimide as a probe for the study of functional sites and conformations of 30S ribosomal subunits. J. Mol. Biol 79: 481–494.

    Article  PubMed  CAS  Google Scholar 

  • Grosjean, H.J., de Henau, S., Crothers, D.M. (1978). On the physical basis for ambiguity in genetic coding interactions. Proc. Nat. Acad. Sci. USA 75: 610–614.

    CAS  Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Gutell, R.R., Weiser, B., Woese, C.R., Noller, H.F. (1985). Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucl. Acid Res. Mol. Biol 32: 156–216.

    Google Scholar 

  • Hogan, J.H., and Noller, H.F. (1978). Altered topography of 16S RNA in the inactive form of Escherichia coli 30S ribosomal subunits. Biochem. 17: 587–593.

    Article  CAS  Google Scholar 

  • Köchel, H.G., Küntzel, H. (1981). Nucleotide sequence of the Aspergillus nidulans mitochondrial gene coding for the small ribosomal subunit RNA. Nucl. Acids Res 9: 5689–5696.

    Article  PubMed  Google Scholar 

  • Kruger, K., Grabowski, P.J., Zaug, A., Sands, J., Gottschling, D.E., Cech, T.R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M. (1969). Detailed molecular model for transfer ribonucleic acid. Nature 224: 759–763.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Tzagoloff, A., Underbrink-Lyon, K., Martin, N.C. (1982). Identification of the paromomycin resistance mutation in the 15S rRNA of yeast mitochondria. J. Biol. Chem 257: 5921–5928.

    PubMed  CAS  Google Scholar 

  • Moazed, D., Stern, S., Noller, H.F. (1986a). Rapid chemical probing of conformation in 16S rRNA and 30S subunits using primer extension. J. Mol. Biol 187: 399–416.

    Article  PubMed  CAS  Google Scholar 

  • Moazed, D., Van Stolk, B., Douthwaite, S., Noller, H.F. (1986b). (submitted for publication). Noller, H.F. (1974). Topography of 16S RNA in 30S ribosomal subunits. Nucleotide sequences and location of sites of reaction with kethoxal. Biochem 13: 4694–4703.

    Google Scholar 

  • Noller, H.F. (1979) Structure and topography of ribosomal RNA. In Ribosomes, eds. Chambliss, G., et al., University Park Press, Baltimore, pp. 3–22.

    Google Scholar 

  • Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem 53: 119–162.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Woese, C.R. (1981). Secondary structure of 16S ribosomal RNA. Science 212: 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Guteil, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R., Woese, C.R. (1981). Secondary structure model for 23S ribosomal RNA. Nucl. Acids Res 9: 6167–6189.

    Article  PubMed  CAS  Google Scholar 

  • Ofengand, J., Liou, R., Kohut, J., Schwartz, I., Zimmermann, R.A. (1979). Covalent cross-linking of transfer RNA to the ribosomal P site. Mechanism and site of reaction in transfer RNA. Biochem. 18: 4322–4332.

    Article  CAS  Google Scholar 

  • Ofengand, J., Liou, R. (1981). Correct codon-anticodon base pairing at the 5′-anticodon position blocks covalent cross-linking between tRNA and 16S RNA at the ribosomal P site. Biochem. 20: 552–559.

    Article  CAS  Google Scholar 

  • Ofengand, J., Gornicki, P., Chakraburtty, K., Nurse, K. (1982). Functional conservation near the 3′ end of eukaryotic small subunit RNA: photochemical crosslinking of P site-bound acetylvalyl-tRNA to 18S RNA of yeast ribosomes. Proc. Nat. Acad. Sci. USA 79: 2817–2821.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D.A., Gilbert, W. (1980). Chemical probes for higher-order structure in RNA. Proc. Nat. Acad. Sci. USA 77: 4679–4682.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J.B., Taylor, B.H., Thurlow, D.L., Ofengand, J., Zimmermann, R.A. (1982). Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc. Nat. Acad. Sci. USA 79: 5450–5454.

    Article  PubMed  CAS  Google Scholar 

  • Rich, A. (1974) How transfer RNA may move inside the ribosome. In Ribosomes, eds. Nomura, A., Tissieres, A., Lengyel, P. Cold Spring Harbor, New York, pp. 871–884.

    Google Scholar 

  • Rich, A., Raj Bhandary, U.L. (1976). Transfer RNA: molecular structure, sequence and properties. Ann. Rev. Biochem 45: 805–860.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, I., Ofengand, J., (1978). Photochemical cross-linking of unmodified ace-tylvalyl-tRNA to 16S RNA at the ribosomal P site. Biochem. 17: 2524–2530.

    Article  CAS  Google Scholar 

  • Seilhammer, J., Olsen, G.J., Cummings, D.J. (1984). Paramecium mitochondrial genes. I. Small subunit rRNA sequence and microevolution. J. Biol. Chem 259: 5167–5172.

    Google Scholar 

  • Sigmund, C.D., Ettayebi, M., Morgan, E.A. (1984). Antibiotic resistance mutations in the 16S and 23S ribosomal RNA genes of Escherichia coli. Nucl. Acids. Res 12: 4653–4663.

    Article  PubMed  CAS  Google Scholar 

  • Sor, F., Fukuhara, H. (1980). Nucleotide sequence of the genes for the mitochondrial 15S ribosomal RNA of yeast. C.R. Acad. Sci. Paris 291: 933–936.

    CAS  Google Scholar 

  • Sor, F., Fukuhara, H. (1982). Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucl. Acids Res 10: 6571–6577.

    Article  PubMed  CAS  Google Scholar 

  • Stiege, W., Glotz, C., Brimacombe, R. (1983). Localisation of a series of intra-RNA cross-links in the secondary structure of 23S RNA induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Nucl. Acids. Res 11: 1687–1706.

    Article  PubMed  CAS  Google Scholar 

  • Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C., Crothers, D.M., Gralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246: 40–41.

    PubMed  CAS  Google Scholar 

  • Van Stolk, B.J., Noller, H.F. (1984). Chemical probing of conformation in large RNA molecules. Analysis of 16S ribosomal RNA using diethylpyrocarbonate. J. Mol. Biol 180: 151–177.

    Article  PubMed  Google Scholar 

  • Woese, C.R. (1970). Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature 226: 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (1979). Just-so stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery. In Ribosomes, eds. Chambliss, G., et al., University Park Press, Baltimore, pp. 357–373.

    Google Scholar 

  • Woese, C.R., Gutell, R.R., Gupta, R., Noller, H.F. (1983). A detailed analysis of the higher-order structure of 16S-like ribosomal RNAs. Microbiol. Rev 47: 621–669.

    PubMed  CAS  Google Scholar 

  • Youvan, D.C., Hearst, J.E. (1979). Reverse transcriptase pauses at N2-methylguanine during in vitro transcription of Escherichia coli 16S ribosomal RNA. Proc. Nat. Acad. Sci. USA 76: 3751–3754.

    Article  PubMed  CAS  Google Scholar 

  • Zamir, A., Miskin, R., Elson, D. (1971). Inactivation and reactivation of ribosomal subunits: aminoacyl-transfer RNA binding activity of the 30S subunit of Escherichia coli. J. Mol. Bol 60: 347–364.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Noller, H.F. et al. (1986). Studies on the Structure and Function of Ribosomal RNA. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics