Skip to main content

Probing Ribosomal Structure and Function

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Ribosomal RNA must have a strategic and important role that cannot be played by ribosomal proteins, nor perhaps by any other cellular component. The structural complexity of the ribosomal RNAs is not merely a gratuitous gesture of nature but is indicative of strong structural and functional roles. For these reasons, it is essential that the structural and functional domains of the ribosomal RNA within the ribosome be clearly defined and mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backendorf, C., Overbeek, G.P., Van Boom, J.H., Van der Marel, G., Veeneman, G., Van Duin, J. (1980). Role of 16S RNA in ribosome messenger recognition. Eur. J. Biochem. 110: 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Barta, A., Steiner, G., Brosius, J., Noller, H.F., Kuechler, E. (1984). Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc. Natl. Acad. Sci. USA 81: 3607–3611.

    Article  PubMed  CAS  Google Scholar 

  • Berkower, I., Leis, J., Hurwitz, J. (1973). Isolation and characterization of an endonuclease from E. coli specific for ribonucleic acid-deoxyribonucleic acid hybrid structures. J. Biol. Chem. 248: 5914–5921.

    PubMed  CAS  Google Scholar 

  • Brow, D.A., Noller, H.F. (1983). Protection of ribosomal RNA from kethoxal in polyribosomes. Implication of specific sites in ribosome function. J. Mol. Biol. 163: 27–46.

    Article  PubMed  CAS  Google Scholar 

  • Donis-Keller, H. (1979). Site specific enzymatic cleavage of RNA. Nucl. Acids Res. 7: 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Douthwaite, S., Christensen, A., Garrett, R.A. (1983). Higher order structure in the 3′-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote. J. Mol. Biol. 169: 249–279.

    Article  PubMed  CAS  Google Scholar 

  • Herr, W., Noller, H.F. (1979) Protection of specific sites in 23S and 5S RNA from chemical modification by association of 30S and 50S ribosomes. J. Mol. Biol. 130: 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Mankin, A.S., Skripkin, E.A., Chichkova, N.V., Kopylov, A.M., Bogdanov, A.A. (1981). An enzymatic approach for localization of oligodeoxyribonucleotide binding sites on RNA. FEBS Lett. 131: 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Meier, N., Wagner, R. (1984). Binding of tRNA alters the chemical accessibility of nucleotides within the large ribosomal RNAs of E. coli ribosomes. Nucl. Acids Res. 12: 1473–1487.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F. (1974). Topography of 16S RNA in 30S ribosomal subunits. Nucleotide sequences and location of sites of reaction with kethoxal. Biochemistry 13: 4694–4703.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem. 53: 119-162.

    Google Scholar 

  • Noller, H.F., Chaires, J.B. (1972). Functional modification of 16S ribosomal RNA by kethoxal. Proc. Natl. Acad. Sci. USA 69: 3115–3118.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Guteil, R.R., Kopylov, A.M., Dohme, F., Herr, W. (1981). Secondary structure model for 23S ribosomal RNA. Nucl. Acids Res. 9: 6167–6189.

    Article  PubMed  CAS  Google Scholar 

  • Ofengand, J., Liou, R., Kohut, J., Ill, Schwartz, I., Zimmermann, R.A. (1979). Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Mechanism and site of reaction in transfer ribonucleic acid. Biochemistry 18: 4322–4332.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D., Gilbert, W. (1980). Chemical probes for higher-order structure in RNA. Proc. Natl. Acad. Sci. USA 77: 4679–4682.

    Article  PubMed  CAS  Google Scholar 

  • Peattie, D., Herr, W. (1981). Chemical probing of the tRNA-ribosome complex. Proc. Natl. Acad. Sci. USA 78: 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J.B., Taylor, B.H., Thurlow, D.L., Ofengand, J., Zimmermann, R.A. (1982). Covalent crosslinking of tRNAval1 to 16S RNA at the ribosomal P site: identification of the crosslinked residues. Proc. Natl. Acad. Sci. USA 79: 5450–5454.

    Article  PubMed  CAS  Google Scholar 

  • Santer, M., Shane, S. (1977). Area of 16S ribonucleic acid at or near the interface between 30S and 50S ribosomes of E. coli. J. Bact. 130: 900–910.

    PubMed  CAS  Google Scholar 

  • Schwartz, I., Ofengand, J. (1978). Photochemical cross-linking of unmodified acetyl- valyl-tRNA to 16S RNA at the ribosomal P site. Biochemistry 17: 2524–2530.

    Article  PubMed  CAS  Google Scholar 

  • Skripkin, E.A., Kagramanova, V.K., Chichkova, N.V., Loplylov, A.M., Bogdanov, A.A. (1981). Mapping of the 16S rRNA regions in the ribosome capable of complementary binding of oligonucleotides. Biokhimiya 46: 2250–2256.

    CAS  Google Scholar 

  • Taylor, B.N., Prince, J.B., Ofengand, J., Zimmermann, R.A. (1981). Nonanucleotide sequence from 16S ribonucleic acid at the peptidyl transfer ribonucleic acid binding site of the Escherichia coli ribosome. Biochemistry 20: 7581–7588.

    Article  PubMed  CAS  Google Scholar 

  • Van Stolk, B.J., Noller, H.F. (1984) Chemical probing of conformation in large RNA molecules: analysis of 16S ribosomal RNA using diethylpyrocarbonate. J. Mol. Biol. 180: 151–177.

    Article  PubMed  Google Scholar 

  • Vassilenko, S.K., Carbon, P., Ebel, J.P., Ehresmann, C. (1981). Topography of 16S RNA in 30S subunits and 70S ribosomes accessibility to cobra venom ribonuclease. J. Mol.Biol. 152: 699–721.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., Gutell, R, Gupta, R, Noller, H.F. (1983). Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621–669.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R.A., Gates, S.M., Schwartz, I., Ofengand, J. (1979). Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Site of reaction in 16S ribonucleic acid. Biochemistry 18: 4333–4339.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hill, W.E., Tapprich, W.E., Tassanakajohn, A. (1986). Probing Ribosomal Structure and Function. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics