Skip to main content

Sources, Amounts, and Forms of Alkali Elements in Soils

  • Conference paper
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 6))

Abstract

The elements Li, Na, K, Rb, Cs, and Fr constitute group 1A of the periodic table and are collectively referred to as the alkali metals or alkalies. Stable isotopes of all these elements except Fr exist in soils; they are 6Li, 7Li, 23Na, 39K, 41K, 85Rb, and 133Cs. Of the various radioactive isotopes of the alkali metals, the artificial isotope 137Cs and the natural isotopes 40K and 87Rb are the main ones found in soils. There are several isotopes of Fr but only the radioactive isotope 223Fr from the α decay of Ac occurs naturally. Inasmuch as only 1.2% of the Ac undergoing radioactive decay yields Fr and the half-life of this isotope of Fr is only 21 min, however, even the existence of Fr in soils has been difficult to establish. Some work on the geochemistry of Fr and the contribution of Fr to the radioactivity of soils has been reported (Maddock, 1963), but this element is not considered further here.

Journal Paper No. J-12134 of the Iowa Agriculture Home Economics Experiment Station, Ames, Iowa. Project No. 2692

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addiscott, T.M., and O. Talibudeen. 1969. The buffering capacity of potassium reserves in soils. Potash Rev. 4/45. 24pp.

    Google Scholar 

  • Agarwal, R.R. 1960. Potassium fixation in soils. Soils Fertil. 23:375–378.

    Google Scholar 

  • Ahrens, L.H. 1964. The significance of the chemical bond for controlling the geochemical distribution of the elements. Part 1. Phys. Chem. Earth 5: 1–54.

    CAS  Google Scholar 

  • Ahrens, L.H. 1965. Distribution of the Elements in our Planet. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Aidinyan, R. Kh. 1959. Distribution of rare alkalies in soil colloids and the participation of plants in this process. Geochemistry 4:428–441.

    Google Scholar 

  • Aller, L.H. 1961. The Abundance ofthe Elements. Wiley-Interscience, New York.

    Google Scholar 

  • American Geological Institute. 1976. Glossary of Geology and Related Sciences. Anchor Press, New York.

    Google Scholar 

  • Angino, E.E., H.L. Cannon, K.M. Hambidge, and A.W. Voors. 1974. Lithium. In: W. Mertz (ed.) Geochemistry and the Environment. Vol. 1. National Academy of Sciences, Washington, DC, pp. 36–42.

    Google Scholar 

  • Arnold, M. A., and M. E. Meyerhoff. 1984. Ion-selective electrodes. Anal. Chem.56:20R-48R.

    CAS  Google Scholar 

  • Asher, C. J., and P. G. Ozanne. 1967. Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci. 103:155–161.

    CAS  Google Scholar 

  • Aubert, H., and M. Pinta. 1977. Trace Elements in Soils. Elsevier, New York.

    Google Scholar 

  • Babcock, K. L., and R. L. Schultz. 1970. Isotopic and conventional determination of exchangeable sodium percentage of soil in relation to plant growth. Soil Sci.109:19–22.

    Google Scholar 

  • Baldar, W. A., and L. D. Whittig. 1968. Occurrence and synthesis of soil zeolites. Soil Sci. Soc. Am. Proc. 32:235–238.

    CAS  Google Scholar 

  • Barber, S. A. 1984. Soil Nutrient Bioavailability. John Wiley and Sons, New York.

    Google Scholar 

  • Barber, S. A., J. M. Walker, and E. H. Vasey. 1963. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J. Agric. Food Chem. 11:204–207.

    CAS  Google Scholar 

  • Barshad, I. 1950. The effect of the interlayer cations on the expansion of the mica type of crystal lattice. Am. Mineral. 35:225–228.

    CAS  Google Scholar 

  • Barshad, I. 1964. Chemistry of soil development. In: F. E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 1–70.

    Google Scholar 

  • Barth, T. W. 1969. Feldspars. Wiley-Interscience, New York.

    Google Scholar 

  • Bassett, W. A. 1959. The origin of the vermiculite deposit at Libby, Montana. Am. Mineral. 44:282–299.

    CAS  Google Scholar 

  • Bates, T. E., and A. D. Scott. 1969. Control of potassium release and reversion associated with changes in soil moisture. Soil Sci. Soc. Am. Proc. 33:566–568.

    CAS  Google Scholar 

  • Baver, L. D., and N. S. Hall. 1937. Colloidal properties of soil organic matter. Res. Bull. 267. Missouri Agricultural Experiment Station.

    Google Scholar 

  • Bear, F. E. (ed.) 1953. Sodium symposium. Soil Sci. 76: 1–96.

    Google Scholar 

  • Beckett, P. H. T. 1971. Potassium potentials—a review. Potash Rev. 5/30,41 pp.

    Google Scholar 

  • Bingham, F. T., A. L. Page, and C. R. Bradford. 1964. Tolerance of plants to lithium. Soil Sci. 98:4–8.

    CAS  Google Scholar 

  • Black, C. A. 1968. Soil-Plant Relationships. 2nd ed. John Wiley and Sons, New York.

    Google Scholar 

  • Bolton, J. 1966. Distribution and rate of release of cations from mechanical fractions of soils. Ann. Rept. Rothamsted Expt. Sta. 1965, pp. 61–62.

    Google Scholar 

  • Bolton, J. 1971. Quantity-intensity relationships for labile sodium in field soils. J. Soil Sci. 22:417–429.

    CAS  Google Scholar 

  • Bouat, M. 1969. L’utilisation du potassium 40 et potassium 42 en agronomie. Ann.Agron. 20:89–104.

    CAS  Google Scholar 

  • Bowen, H. J. M. 1979. Environmental Chemistry of the Elements. Academic Press, New York.

    Google Scholar 

  • Bowen, H. J. M., and P. A. Cawse. 1965. Some effects of gamma radiation on the composition of the soil solution and soil organic matter. Soil Sci. 98:358–361.

    Google Scholar 

  • Boyer, J. 1972. Soil potassium. In: Soils of the Humid Tropics. National Academy of Sciences, Washington, DC, pp. 102–135.

    Google Scholar 

  • Bradford, G. R. 1963. Lithium survey of California’s water resources. Soil Sci. 96:77–81.

    Google Scholar 

  • Bradford, G. R. 1966. Lithium. In: H. D. Chapman (ed.) Diagnostic Criteria for Plants and Soils. University of California, Division of Agricultural Sciences, pp. 218–224.

    Google Scholar 

  • Bradford, G. R., and P. F. Pratt. 1961. Separation and determination of lithium in irrigation water, plant material, and soil extracts. Soil Sci. 91: 189–193.

    CAS  Google Scholar 

  • Brady, N. C. 1984. The Nature and Properties of Soils. 9th ed. Macmillan, New York.

    Google Scholar 

  • Bresler, E., B. L. McNeal, and D. L. Carter. 1982. Saline and Sadie Soils. Springer-Verlag, Berlin.

    Google Scholar 

  • Briscoe, H. V. A., A. A. Eldridge, G. M. Dyson, and A. J. E. Welch (eds.) 1961. Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol.II, Suppl. II. John Wiley and Sons, New York.

    Google Scholar 

  • Briscoe, H. V. A., A. A. Eldridge, G. M. Dyson, and A. J. E. Welch (eds.) 1963. Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol.II, Suppl. III. John Wiley and Sons, New York.

    Google Scholar 

  • Brownell, P. F. 1979. Sodium as an essential micronutrient element in plants and its role in metabolism. Adv. Bot. Res. 7:117–224.

    CAS  Google Scholar 

  • Buckman, H. O., and N. C. Brady. 1969. The Nature and Properties of Soils. 7th ed. Macmillan, New York.

    Google Scholar 

  • Burbidge, E. M., G. R. Burbidge, W. A. Fowler, and F. Hoyle. 1957. Synthesis of the elements in stars. Rev. Mod. Phys. 29:547–650.

    Google Scholar 

  • Burridge, J. C., and P. M. Ahn. 1965. A spectrographic survey of representative Ghana forest soils. J. Soil Sci. 16:296–309.

    CAS  Google Scholar 

  • Butler, J. R. 1954. Trace-element distribution in some Lancashire soils. J. Soil Sci. 5: 156–166.

    CAS  Google Scholar 

  • Call, F. 1961. Biological properties of lithium. In: H.V.A. Briscoe, A.A. Eldridge, G.M. Dyson, and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry: Vol. II, Suppl. II. John Wiley and Sons, New York, pp. 293–304.

    Google Scholar 

  • Chester, R. 1965. Elemental geochemistry of marine sediments. In: J.P. Riley and G. Skirrow (eds.) Chemical Oceanography, Vol. 2. Academic Press, New York, pp. 23–80.

    Google Scholar 

  • Clarke, F. W. 1924. The data of geochemistry. US Geological Survey Bull. 770.

    Google Scholar 

  • Coffey, G. N. 1912. A study of the soils of the United States. US Department of Agriculture, Bureau of Soils, Bull. No. 85.

    Google Scholar 

  • Cook, M. G., and C. I. Rich. 1962. Weathering of sodium-potassium mica in soils of the Virginia Piedmont. Soil Sci. Soc. Am. Proc. 26:591–595.

    CAS  Google Scholar 

  • Cooke, G. W. 1967. The control of Soil Fertility. Lockwood, London.

    Google Scholar 

  • Cotton, F. A., and G. Wilkinson. 1980. Advanced Inorganic Chemistry: A Comprehensive Text. John Wiley and Sons, New York.

    Google Scholar 

  • Coughtrey, P. J., and M. C. Thorne. 1983a. Rubidium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems. A Critical Reviewof Data. Vol. 1. A.A. Balkema, Rotterdam, pp. 69–92.

    Google Scholar 

  • Coughtrey, P. J., and M. C. Thorne. 1983b. Cesium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems. A Critical Review of Data. Vol. 1. A.A. Balkema, Rotterdam, pp. 321–424.

    Google Scholar 

  • Coughtrey P. J., D. Jackson, and M. Thorne. 1983. Sodium. In: Radionuclide Distribution and Transport in Terrestial and Aquatic Ecosystems, A Critical Review of Data. Vol. 3. A.A. Balkema, Rotterdam, pp. 1–41.

    Google Scholar 

  • Curtis, C. D., P. E. Brown, and V. A. Somogyi. 1969. A naturally occurring sodium vermiculite from Unst, Shetland. Clay Mineral. 8:15–19.

    CAS  Google Scholar 

  • Davey, B. G., and R. C. Wheeler. 1980. Some aspects of the chemistry of lithium in soils. Plant Soil 57:49–60.

    CAS  Google Scholar 

  • Davis, J. J. 1963. Cesium and its relationship to potassium in ecology. In: V. Schultz and A. W. Klement (eds.) Radioecology. Reinhold, New York.

    Google Scholar 

  • Day, F. H. 1964. The Chemical Elements in Nature. Reinhold, New York.

    Google Scholar 

  • Deer, W. A., R. A. Howie, and J. Zussman. 1962. Rock Forming Minerals, Vol. 3. Sheet Silicates. Longmans, London.

    Google Scholar 

  • Diamond, J. M., and E. M. Wright. 1969. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Ann. Rev. Physiol. 31:581–646.

    CAS  Google Scholar 

  • Diest, J., and O. Talibudeen. 1967. Rubidium-86 as a tracer for exchangeable potassium in soils. Soil Sci. 104:119–122.

    Google Scholar 

  • Donnay, G., and J. W. Gryder. 1964. The ionic radius of lithium. Carnegie Inst. Wash. Year Book 63:238–239.

    CAS  Google Scholar 

  • Duthion, C. 1968. Potassium in the soil. Potash Rev. 4/43. 21pp.

    Google Scholar 

  • Eaton, F. M., and V. P. Sokoloff. 1935. Absorbed sodium in soils as affected by the soil-water ratio. Soil Sci. 40:237–247.

    CAS  Google Scholar 

  • Eberl, D. D. 1980. Alkali cation selectivity and fixation by clay minerals. Clays Clay Mineral. 28:161–172.

    CAS  Google Scholar 

  • Eckert, D. J., and E. O. McLean. 1980. Differential bonding of potassium and rudibium-86 in soils of differing clay type and degree of weathering. Soil Sci. Soc. Am. J. 44:425–428

    CAS  Google Scholar 

  • Eisenman, G. 1962. Cation-selective glass electrodes and their mode of operation. Biophys, J. 2(part 2):259–324.

    PubMed  CAS  Google Scholar 

  • Eisenman, G. 1969. Theory of membrane electrode potentials: an examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral sequestering molecules. In: R.A. Durst (ed.) lon-Selective Electrodes. National Bureau of Standards, Spec. Publ. 314, pp. 1–56.

    Google Scholar 

  • Epstein, E. 1960. Calcium-lithium competition in absorption by plant roots. Nature (London) 1985:705–706.

    Google Scholar 

  • Evans, D. W., J. J. Alberts, and R. A. Clark III. 1983. Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim. Cosmochim. Acta 47: 1041–1049.

    CAS  Google Scholar 

  • Failyer, G. H., J. G. Smith, and H. R. Wade. 1908. The mineral composition of soil particles. US Department of Agriculture, Bureau of Soils, Bull. No. 54.

    Google Scholar 

  • Fanning, D. S., and V. Z. Keramidas. 1977. Micas. In: J.B. Dixon and S. B. Weed (eds.) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp. 195–258.

    Google Scholar 

  • Farrell, R. E. 1979. Electrochemical determination of extractable potassium in micaceous minerals. M.S. Thesis. Iowa State University, Ames, IA.

    Google Scholar 

  • Farrell, R. E. 1985. Development and application of potentiometric methods of characterizing potassium in soils and micaceous minerals. Ph.D. Diss. Iowa State University, Ames, IA. (Diss. Abstr. 85–24650).

    Google Scholar 

  • Foster, N. D. 1960. Interpretation of the composition of lithium micas. US Geological Survey, Prof. Paper 354-E.

    Google Scholar 

  • Frere, M. H., R. G. Menzel, K. H. Larson, R. Overstreet, and R. F. Reitemeier. 1963. The behavior of radioactive fallout in soils and plants. National Academy of Sciences-National Research Council, Publ. 1092.

    Google Scholar 

  • Gentili, R. 1954. The geochemistry of potassium. Potassium Symp. 1954:27–40.

    Google Scholar 

  • Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, Oxford.

    Google Scholar 

  • Goles, G. G. 1969. Cosmic abundances. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. I. Springer-Verlag, Berlin, pp. 116–133.

    Google Scholar 

  • Gordy, W., and W. J. O. Thomas. 1956. Electronegativities of the elements. J. Chem. Phys. 24:439–444

    CAS  Google Scholar 

  • Goulding, K. W. T. 1983. Thermodynamics and potassium exchange in soils and clay minerals. Adv. Agron. 36:215–264.

    CAS  Google Scholar 

  • Greenwood, R. 1960. Availability of cesium for ion rockets. Mining Eng. 12:482–483.

    Google Scholar 

  • Grimes, D. W. 1966. An evaluation of the availability of potassium in crop residues. Ph.D. Diss. Iowa State University, Ames, IA (Diss. Abstr. 66–06981).

    Google Scholar 

  • Grimme, H., and K. Nemeth. 1978. The evaluation of soil K status by means of soil testing. Proc, 11th Congr. Int. Potash lnst. 1978:99–108.

    Google Scholar 

  • Hanway, J. J. 1954. Fixation and release of ammonium in soils and certain minerals. Ph.D. Diss. Iowa State University, Ames, IA.

    Google Scholar 

  • Hanway, J. J., and A. D. Scott. 1956. Ammonium fixation and release in certain Iowa soils. Soil Sci. 82:379–386.

    CAS  Google Scholar 

  • Hanway, J. J., A. D. Scott, and G. Stanford. 1957. Replaceability of ammonium fixed in clay minerals as influenced by ammonium or potassium in the extracting solution. Soil Sci. Soc. Am. Proc. 21:29–34.

    CAS  Google Scholar 

  • Hargett, N. L., and J. T. Berry. 1985. Fertilizer summary data. TVA Bull. 189. Muscle Shoals, AL.

    Google Scholar 

  • Heier, K. S., and J. A. S. Adams. 1964. The geochemistry of the alkali metals. Phys.Chem. Earth 5:253–381.

    CAS  Google Scholar 

  • Heier, K. S., and G. K. Billings. 1970. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vols. II/1,II/2, and II/3. Springer-Verlag, Berlin.

    Google Scholar 

  • Helfferich, F. 1962. Ion Exchange. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Helfferich, F. 1966. Ion-exchange kinetics. In: J.A. Marinsky (ed.) Ion Exchange.Vol. 1. Marcel Dekker, New York, pp. 65–100.

    Google Scholar 

  • Heydemann, A. 1969. Tables. In: K.H. Wedepohl (ed.) Handbook of Geochemistry.Vol. 1. Springer-Verlag, Berlin, pp. 376–412.

    Google Scholar 

  • Hood, J. T., N. C. Brady, and D. J. Lathwell. 1956. The relationship of water soluble and exchangeable potassium to yield and potassium uptake by Ladino clover. Soil Sci. Soc. Am. Proc. 20:228–231.

    CAS  Google Scholar 

  • Horstman, E. L. 1957. The distribution of lithium, rubidium, and caesium in igneous and sedimentary rocks. Geochim. Cosmochim. Acta 12:1–28.

    CAS  Google Scholar 

  • International Potash Institute. 1972. Mineralogy of soil potassium. In: Potassium in Soil. Proc. 9th Colloq. Int. Potash lnst. Landshut, Federal Republic of Germany, pp. 13–71.

    Google Scholar 

  • Jackson, M. L. 1964. Chemical composition of soils. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 71–141.

    Google Scholar 

  • Jeffries, C. D. 1947. The mineralogical approach to some soil problems. Soil Sci. 63:315–320.

    CAS  Google Scholar 

  • Johnson, F. N. 1984. The Psychopharmacology of Lithium, MacMillan Press, London.

    Google Scholar 

  • Kabata-Pendias, A., and H. Pendias. 1984. Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kelley, W. P. 1951. Alkali Soils, Their Formation, Properties and Reclamation. Reinhold, New York.

    Google Scholar 

  • Kilmer, V. J. 1965. Silicon. Agronomy 9:959–962

    CAS  Google Scholar 

  • Kirkham, M. B. 1979. Sludge disposal. In: R.W. Fairbridge and C.W. Finkl, Jr. (eds.) Encyclopedia of Soil Science. Part I. Dowden, Hutchinson & Ross, Stroudsburg, PA, pp. 429–433.

    Google Scholar 

  • Lange, I. M., R. C. Reynolds, and J. B. Lyons. 1966. K/Rb ratios in coexisting K-feldspars and biotites from some new England granites and metasediments. Chem. Geol. 1:317–322.

    CAS  Google Scholar 

  • Larson, W. E. 1949. Release of sodium from nonreplaceable to replaceable forms in Iowa soils and the response of various crops to sodium fertilization. Ph.D. Diss. Iowa State University, Ames, IA.

    Google Scholar 

  • Larson, W. E., and W. H. Allaway. 1950. Release of sodium from nonreplaceable to replaceable forms in some Iowa soils. Soil Sci. 70:249–256.

    CAS  Google Scholar 

  • Lee, S. Y., and R. W. Tank. 1985. Role of clays in the disposal of nuclear waste: A review. Appl. Clay Sci. 1:145–162

    CAS  Google Scholar 

  • Liu, M. M. 1970. Exchangeability of potassium in Marshall soil. M.S. Thesis. Iowa State University, Ames, IA.

    Google Scholar 

  • Livingstone, D. A. 1963. Chemical composition of rivers and lakes. US Geological Survey, Prof. Paper 440-G.

    Google Scholar 

  • Lomenick, T. F., D. G. Jacobs, and E. G. Struxness. 1967. The behavior r of strontium-90 and cesium-137 in seepage pits at ORNL. Health Phys. 13:897–905.

    PubMed  CAS  Google Scholar 

  • Loughnan, F. C. 1969. Chemical Weathering of the Silicate Minerals. Elsevier, New York.

    Google Scholar 

  • Luebs, R. E., G. Stanford, and A. D. Scott. 1956. Relation of available potassium to soil moisture. Soil Sci. Soc. Am. Proc. 20:45–50.

    CAS  Google Scholar 

  • Maddock, A. G. 1963. Francium. In: H.V. Briscoe, A.A. Eldridge, G.M. Dyson, and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II, Suppl. III. John Wiley and Sons, New York, pp. 2506–2521.

    Google Scholar 

  • Marbut, C. F. 1935. Soils of the United States. In: Atlas of American Agriculture. Part 3. US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Martin, G. R. 1963. The natural radioactivity of the alkali metals. In: H.V.A. Briscoe, A.A. Eldridge, G.M. Dyson and A.J.E. Welch (eds.) Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II, Suppl.III. John Wiley and Sons, New York, pp. 2408–2505.

    Google Scholar 

  • Martin, H. W., and D. L. Sparks. 1985. On the behavior of nonexchangeable potassium in soils. Commun. Soil Sci. Plant Anal. 16:133–162.

    CAS  Google Scholar 

  • Mason, B. 1966. Principles ojGeochernistry. 3rd ed. John Wiley and Sons, New York.

    Google Scholar 

  • Matthews, B.C., and J.A. Smith. 1957. A percolation method for measuring potassium-supplying power of soils. Can. J. Soil Sci. 37:21–28.

    CAS  Google Scholar 

  • McCaHan, M.E., B.M. O’Leary, and C.W. Rose. 1980. Redistribution of cesium137 by erosion and deposition on an Australian soil. Austr. J. Soil Res. 18:119–128.

    Google Scholar 

  • McGeorge, W.T. 1931. Organic compounds associated with base exchange reactions in soils. Arizona Agr. Expt. Sta. Tech. Bull. No. 31.

    Google Scholar 

  • McHenry, J.R., and G.D. Bubenzer. 1985. Field erosion estimated from 137CS activity measurements. Trans. Am. Soc. Agric. Eng. 28:480–483.

    Google Scholar 

  • McLaughlin, R.J.W. 1955. Geochemical changes due to weathering under varying climatic conditions. Geochim. Cosmochim. Acta 8: 109–130.

    CAS  Google Scholar 

  • McLaughlin, R.J.W. 1958. Geochemical partition in two illitic clays. Geochim.Cosmochi. Acta 15:165–169.

    CAS  Google Scholar 

  • McLaughlin, R.J.W. 1959. The geochemistry of some kaolinitic clays. Geochim.Cosmochim. Acta 17:11–16.

    CAS  Google Scholar 

  • Mellor, J.W. 1922. A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. II. Longmans Green, London.

    Google Scholar 

  • Mengel, K., and E.A. Kirby. 1980. Potassium in crop production. Adv. Agron. 33:59–103.

    CAS  Google Scholar 

  • Menzel, R.G., and S.J. Smith. 1984. Soil fertility and plant nutrition. In: M.F. L’Annunziata and J.0. Legg (eds.) Isotopes and Radiation in Agricultural Sciences. Vol. 1. Academic Press, London, pp. 1–34.

    Google Scholar 

  • Merwin, H.D., and M. Peech. 1950. Exchangeability of soil potassium in the sand, silt, and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Sci. Soc. Am. Proc. 15:125–128.

    Google Scholar 

  • Metson, AJ. 1980. Potassium in New Zealand soils. New Zealand Soil Bureau, Sci. Rept. 38. 61 pp.

    Google Scholar 

  • Mielniczuk, J. 1979. Forms of potassium in Brazilian soils. Potash Rev.4/63.13 pp.

    Google Scholar 

  • Mitchell, R.L. 1964. Trace elements in soils. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 320–368.

    Google Scholar 

  • Mortensen, J.L., and F.L. Himes. 1964. Soil organic matter. In: F.E. Bear (ed.) Chemistry of the Soil. 2nd ed. Reinhold, New York, pp. 206–241.

    Google Scholar 

  • Moss, P. 1969. A comparison of potassium-activity ratios derived from equilibration procedures and from measurements on displaced soil solution. J. Soil Sci. 20:297–306.

    CAS  Google Scholar 

  • Norrish, K. 1972. Factors in the weathering of mica to vermiculite. Proc. 1972 Int. Clay Conf. 2:83–101

    Google Scholar 

  • Norton, J.J. 1965. Lithium-bearing bentonite deposit, Yavapai County, Arizona. pp. DI63-DI66. In: Geological survey research 1965. US Geological Survey, Prof. Paper 525-D.

    Google Scholar 

  • Nyc, P.H. 1972. Localized movement of potassium ions in soil. Proc. 9th Colloq. Int. Potash Inst. pp. 147–155.

    Google Scholar 

  • Parker, F. W. 1921. Methods of studying the concentration and composition of the soil solution. Soil Sci. 12:209–232.

    CAS  Google Scholar 

  • Parker, R.L. 1967. Data of geochemistry. Chapter D. Composition of the earth’s crust. US Geological Survey, Prof. Paper 440-D.

    Google Scholar 

  • Pearson, G.A. 1960. Tolerance of crops to exchangeable sodium. US Department of Agriculture, Information Bull. 216.

    Google Scholar 

  • Pettijohn, F.J. 1957. Sedimentary Rocks. 2nd ed. Harper & Row, New York.

    Google Scholar 

  • Prost, R., and R. Calvet. 1969. Position du lithium dans une montmorillonite Li chauffee. Compt. Rend. Acad. Sci. 269D:539–541.

    Google Scholar 

  • Quernener, J. 1979. The measurement of soil potassium. IPI Research Topics, No.4. Intern. Potash Institute. Bern-Worblanfen, Switzerland.

    Google Scholar 

  • Rankama, K., and Th.G. Sahama. 1950. Geochemistry. University of Chicago Press, Chicago.

    Google Scholar 

  • Rausell-Colom, J.A., T.R. Sweatman, C.B. Wells, and K. Norrish. 1965. Studies in the artificial weathering of mica. In: E.G. Hallsworth and D. V. Crawford (eds.) Experimental Pedology. Butterworths, London. pp. 40–72.

    Google Scholar 

  • Reichenberg, D. 1966. Ion-exchange selectivity. In: J.A. Marinsky (ed.) Ion exchange.Vol. 1. Marcel Dekker, New York. pp. 227–276.

    Google Scholar 

  • Reitemeier, R. F. 1946. Effect of moisture content on the dissolved and exchangeable ions of soil s of arid regions. Soil Sci. 61: 195–214.

    CAS  Google Scholar 

  • Reiterneier, R.F. 1951. Soil potassium. Adv. Agron. 3:113–164

    Google Scholar 

  • Reitemeier, R.F. 1957. Soil potassium and fertility. In: A. Stefferud (ed.), Soil. 1957 Yearbook of Agriculture. US Government Printing Office, Washington, DC, pp. 101–106.

    Google Scholar 

  • Rich, C.I. 1968. Mineralogy of soil potassium. In: V.J. Kilmer, S.E. Younts, and N.C. Brady (eds.) The Role of Potassium in Agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of Agronomy, Madison, WI, pp. 79–108.

    Google Scholar 

  • Rich, C.I., and W.R. Black. 1964. Potassium exchange as affected by cation size, pH, and mineral structure. Soil Sci. 97:384–390.

    CAS  Google Scholar 

  • Richards, F.A. 1956. On the state of our knowledge of trace elements in the ocean.Geochim. Cosmochim. Acta 10:241–243.

    CAS  Google Scholar 

  • Richter, D. 1965. Potassium in soil and plant. Part 1. Occurrence and behavior of potassium in soils. Fortschrittskerichte fur die Landwirtschoft. 14. 47 pp.

    Google Scholar 

  • Ritchie, J.C., and J.R. McHenry. 1973. Vertical distribution of fallout cesium-137 in cultivated soils. Radiation Data Repts. 14:727–728.

    CAS  Google Scholar 

  • Ritchie, J.C., J.R. McHenry, A.C. Gill and P.H. Hanks. 1970. The use of cesium137 as a tracer of sediment movement and deposition. Proc. Miss. Water Res.Conf. pp. 149–162.

    Google Scholar 

  • Ritchie, K.D. (ed.) 1979. K fertility in oxisols and ultisols of the humid tropics. Cornell International Agricultural Bull. 37. 45 pp.

    Google Scholar 

  • Robert, J.L., M. Volfinger, J.N. Barrandon, and M. Basutcu. 1983. Lithium in the interlayer space of synthetic trioctahedral micas. Chem. Geol. 40:337–351

    CAS  Google Scholar 

  • Robinson, B.P. 1962. Ion-exchange minerals and disposal of radioactive wastes —A survey of literature. US Geological Survey Water-Supply Paper 1616.

    Google Scholar 

  • Rosseinsky, D.R. 1965. Electrode potentials and hydration energies. Theories and correlations. Chem. Rev. 65:467–490.

    CAS  Google Scholar 

  • Salmon, R.C. 1964. Potassium in different fractions of some Rhodesian soils. Rhodesian J. Agric. Res. 2:85–90

    CAS  Google Scholar 

  • Sawhney, B.L. 1972. Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Mineral. 20:93–100

    CAS  Google Scholar 

  • Schroeder, D. 1978. Structure and weathering of potassium containing minerals. Proc. 11th Congr. Int. Potash Inst. 1978:5–25.

    Google Scholar 

  • Schuffelen, A.C., and H.W. van der Marel. 1955. Potassium fixation in soils. Potassium Symp, 1955:157–201.

    Google Scholar 

  • Schultz, R.K., R. Overstreet, and I. Barshad. 1960. On the soil chemistry of cesium 137. Soil Sci. 89: 16–27.

    Google Scholar 

  • Scott, A.D. 1968. Effect of particle size on interlayer potassium exchange in micas. Trans. 9th Int. Congr. Soil Sci. 2:649–660.

    CAS  Google Scholar 

  • Scott, A.D., and J.J. Hanway. 1960. Factors influencing the change in exchangeable soil K observed on drying. Trans. 7th Int. Congr. Soil Sci. 3:72–79

    Google Scholar 

  • Scott, A.D., and S.J. Smith. 1966. Susceptibility of interlayer potassium in micas to exchange with sodium. Clays Clay Mineral. 14:69–81.

    CAS  Google Scholar 

  • Scott, A.D., and L.F. Welch. 1961. Release of nonexchangeable soil potassium during short periods of cropping and sodium tetraphenylboron extraction. Soil Sci. Soc. Am. Proc. 25: 128–132.

    CAS  Google Scholar 

  • Shainberg, I., and W.D. Kemper. 1966. Electrostatic forces between clay and cations as calculated and inferred from electrical conductivity. Clays Clay Mineral.14:117–132.

    CAS  Google Scholar 

  • Shainberg, I. and W.D. Kemper. 1967. Ion exchange equilibria on montmorillonite. Soil Sci. 103:4–9.

    CAS  Google Scholar 

  • Sharpley, A.N., S.J. Smith, R.G. Menzel, and R.L. Westerman. 1985. The chemical composition of rainfall in the Southern Plains and its impact on soil and water quality. Oklahoma State University Tech. Bull. T-162.

    Google Scholar 

  • Sherry, H.S. 1969. The ion-exchange properties of zeolites. In: J.A. Marinsky (ed.) Ion Exchange. Vol. 2. Marcel Dekker, New York, pp. 89–133.

    Google Scholar 

  • Short, N.M. 1961. Geochemical variations in four residual soils. J. Geol. 69:534–571.

    CAS  Google Scholar 

  • Shukla, U.C., and K.G. Prasad. 1973. Forms and distribution of lithium, boron and fluorine in some sierozem soils of Haryama. Indian J. Agric. Sci. 43:934–937.

    CAS  Google Scholar 

  • Smith, S.J. 1967. Susceptibility of interlayer potassium in illites to exchange. Ph.D. Diss. Iowa State University, Ames, IA. (Diss. Abstr. 67–08935).

    Google Scholar 

  • Smith, S.J., and A.D. Scott. 1974. Exchangeability of potassium in heated finegrained micaceous minerals. Clays Clay Mineral. 22:263–270

    CAS  Google Scholar 

  • Smith, S.J., L.J. Clark, and A.D. Scott. 1968. Exchangeability of potassium in soils. Trans. 9th Int. Congr. Soil Sci. 2:661–669

    CAS  Google Scholar 

  • Soil Conservation Service-US Department of Agriculture. 1978. Soil Survey laboratory data and descriptions for some soils of Iowa. Soil Survey Investigations Report No. 31.

    Google Scholar 

  • Soil Science Society of America, Terminology Committees. 1979. Glossary of Soil Science Terms. Rev. ed. Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Soil Survey Staff. 1975. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. US Department of Agriculture, Handbook No. 436.

    Google Scholar 

  • Souty, N., R. Guennelon, and C. Rode. 1975. Some observations of potassium rubidium-87 and caesium-137 absorption by plants grown on nutritive solutions. Ann. Agron. 26:41–58.

    CAS  Google Scholar 

  • Spencer, D.W., E.G. Degens, and G. Kulbicki. 1968. Factors affecting element distributions in sediments. In: L.H. Ahrens (ed.) Origin and Distribution of the Elements. Pergamon Press, Oxford, pp. 981–998.

    Google Scholar 

  • Sreekumaran, C.K., K.C. Pillai, and T.R. Folsom. 1968. The concentrations of lithium, potassium, rubidium and cesium in some western American rivers and marine sediments. Geochim. Cosmochim. Acta 32: 1229–1234.

    CAS  Google Scholar 

  • Stern, K.H., and E.S. Adams. 1959. Ionic size. Chem. Rev. 59: 1–64.

    CAS  Google Scholar 

  • Stevens, R.E., and W.T. Schaller. 1942. The rare alkalies in micas. Am. Mineral.27:525–537.

    CAS  Google Scholar 

  • Su, N.R. 1978. Potassium in paddy soils and potassium fertilization of rice. In: Soils and Fertilizers in Taiwan. Taichung, Taiwan. pp. 1–22.

    Google Scholar 

  • Suess, H.E., and H.C. Urey. 1956. Abundances of the elements. Rev. Mod. Phys. 28:53–74.

    CAS  Google Scholar 

  • Swaine, D.J. 1962. The trace-element content of fertilizers. Commonwealth Bureau of Soil Science, Tech. Commun. No. 52.

    Google Scholar 

  • Swaine, D.J., and R.L. Mitchell. 1960. Trace-element distribution in soil profiles. J. Soil Sci. 11:347–368.

    CAS  Google Scholar 

  • Tabatabai, M.A. 1983. Atmospheric deposition of nutrients and pesticides. In: F.W. Schaller and G.W. Bailey (eds.) Agricultural Management and Water Quality. Iowa State University Press, Ames, IA, pp. 92–108.

    Google Scholar 

  • Talibudeen, O. 1964. Natural radioactivity in soils. Soils Fertil. 27:347–359

    CAS  Google Scholar 

  • Talibudeen, O. 1972. Exchange of potassium in soils in relation to other cations. Proc. 9th Colloq. Int. Potash Inst. pp. 97–112.

    Google Scholar 

  • Talibudeen, O., and M.B. Page. 1983. Ion-selective electrodes. In: K.A. Smith (ed.) Soil Analysis. Marcel Dekker, New York, pp. 55–113.

    Google Scholar 

  • Tamura, T. and D.G. Jacobs. 1960. Structural implications in cesium sorption. Health Phys. 2:391–398.

    PubMed  CAS  Google Scholar 

  • Taylor, S.R. 1965. The application of trace element data to problems in petrology. Phys. Chem. Earth 6:133–213

    CAS  Google Scholar 

  • Tettenhorst, R. 1962. Cation migration in montmorillonites. Am. Mineral. 47:769–773.

    CAS  Google Scholar 

  • Timmons, D.R., and R.F. Holt. 1977. Nutrient losses in surface runoff from a native prairie. J. Environ. Qual. 6:369–373.

    CAS  Google Scholar 

  • Tinker, P.B. 1967a. A comparison of the properties of sodium and potassium in the soil. Chilean Nitrate Agriculture Service, Information No. 97.

    Google Scholar 

  • Tinker, P.B. 1967b. The relationship of sodium in the soil to uptake of sodium by sugar beets in the greenhouse and to yield responses in the field. Trans. Commun. II and IV, International Society of Soil Science, Aberdeen, p. 223.

    Google Scholar 

  • Tisdale, S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil Fertility and Fertilizers. 4th ed. Macmillan, New York.

    Google Scholar 

  • Turekian, K.K. 1969. The oceans, streams, and atmosphere. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. Springer-Verlag, Berlin, pp. 297–323.

    Google Scholar 

  • Unger, P.W., and T.M. McCalla. 1980. Conservation tillage systems. Adv. Agron. 33: 1–58.

    Google Scholar 

  • Urey, H. C. 1967. The abundance of the elements with special reference to the problem of the iron abundance. Quart. J. Roy. Astron. Soc. 8:23–47

    CAS  Google Scholar 

  • US Department of Agriculture. 1979. Animal waste utilization on cropland and pastureland. USDA Utilization Res. Report No.6. US Government Printing Office, Washington, DC.

    Google Scholar 

  • US Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Handbook No. 60.

    Google Scholar 

  • Verma, G.P. 1963. Release of nonexchangeable potassium from soils and micaceous minerals during short periods of cropping in the greenhouse. Ph.D. Diss. Iowa State Univ., Ames, IA. (Diss. Abstr. 64–03997).

    Google Scholar 

  • Vinogradov, A.P. 1959. The Geochemistry of Rare and Dispersed Chemical Elements in Soils. 2nd ed. Consultants Bureau, New York.

    Google Scholar 

  • Vlasov, K.A. (ed.) 1966a. Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits. Vol. 1. Geochemistry ofRare Elements. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Vlasov, K.A. (ed.). 1966b. Geochemistry and Mineralogy of Rare Elements and Genetic Types oftheir Deposits. Vol. II. Mineralogy of Rare Elements. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Weaver, C.E. 1967. Potassium, illite and the ocean. Geochim. Cosmochim. Acta 31:2181–2196.

    CAS  Google Scholar 

  • Wedepohl, K.H. 1969a. Composition and abundance of common igneous rocks. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. Springer-Verlag, Berlin, pp. 227–249.

    Google Scholar 

  • Wedepohl, K.H. 1969b. Composition and abundance of common sedimentary rocks. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Vol. 1. SpringerVerlag, Berlin, pp. 250–271.

    Google Scholar 

  • Welby, C.W. 1958. Occurrence of alkali metals in some Gulf of Mexico sediments. J. Sed. Petrol. 28:431–452.

    CAS  Google Scholar 

  • Welch, L.F., and A.D. Scott. 1959. Nitrification in nutrient solutions with low levels of potassium. Can. J. Microbiol. 5:425–430.

    PubMed  CAS  Google Scholar 

  • Welch, L.F., and A.D. Scott. 1960. Nitrification of fixed ammonium in clay minerals as affected by added potassium. Soil Sci. 90:79–85.

    CAS  Google Scholar 

  • Welch, L.F., and A.D. Scott. 1961. Availability of nonexchangeable soil potassium to plants as affected by added potassium and ammonium. Soil Sci. Soc. Am.Proc. 25: 102–104.

    CAS  Google Scholar 

  • Wells, N., and J.S. Whitten. 1972. A pedochemical survey. Part 1. Lithium. N.Z.J. Sci. 15:90–106.

    CAS  Google Scholar 

  • Wiklander, L. 1954. Forms of potassium in the soil. Potassium Symp. 1954:109–121.

    Google Scholar 

  • Wiklander, L. 1964. Cation and anion exchange phenomena. In: F.E. Bear (ed.) Chemistry of the Soil. Reinhold, New York, pp. 163–205.

    Google Scholar 

  • Williams, D.E. 1961. The absorption of potassium as influenced by its concentration in the nutrient medium. Plant Soil 15:387–399.

    CAS  Google Scholar 

  • Xu, M.L., and Z.Y. Liu. 1982. The nutrient status of soil-root interface. I. The application of potassium selective micro-electrode. Acta Pedol. Sinica 19:367–374.

    CAS  Google Scholar 

  • Xuan, J.X. 1982. Mathematical model for the movement of potassium ions to rice roots. Acta Pedal. Sinica 19:296–304

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Scott, A.D., Smith, S.J. (1987). Sources, Amounts, and Forms of Alkali Elements in Soils. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4682-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4682-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9112-1

  • Online ISBN: 978-1-4612-4682-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics