Skip to main content

Insect Neuroendocrinology: Its Past; its Present; Future Opportunities

  • Chapter
Insect Neurochemistry and Neurophysiology · 1989 ·

Abstract

Insects played a major historical role as experimental animals to provide some of the first evidence concerning endocrine functions by the nervous system. Kopec (1917; 1922) extirpated brains from larvae of the gypsy moth, Lymantria dispar and demonstrated that debrained larvae were unable to pupate. This finding provided early evidence that the brain of animals secreted factors that promoted physiological events and, hence, acted in an endocrine manner. Despite these early findings, little further evidence was provided for neurosecretion until the definitive pioneering work of Ernst and Berta Scharrer. With the animal kingdom divided between them (Ernst studying the vertebrates; Berta studying the invertebrates), Ernst first reported that nerve cells had secretory activity in the fish Phoxinus laevis (Scharrer, 1928). The first description of neuroendocrine activity in invertebrates was reported by Berta for neural cells in the X-organ of Aplysia (Scharrer, 1935). This was followed in 1937, by a report identifying secretory cells in the nervous systems of a variety of invertebrates including insects (Scharrer, 1937). Finally, in 1941, a detailed description of insect neurosecretory cells was presented for the corpora cardiaca of the cockroach, Leucophaea maderae (Scharrer, 1941). Eventually this husband-wife team described the structural and functional similarities between the brain-corpora cardiaca-corpora allata complex of insects and the hypothalamic-neurohypophysial complex of vertebrates (Scharrer and Scharrer, 1944). Hence, insects played a key role in the birth of neuroendocrinology by serving as models in which to identify and define the phenomenon of neurosecretion, and insects remain useful as model animals for this purpose today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aota S., Gojobori T., Ishibashi F., Maruyama T and Ikemura T. (1988) Codon usage tabulated from the Gen Bank genetic sequence data. Nucleic Acids Res. 16, r315–r402.

    PubMed  CAS  Google Scholar 

  • Asher C., Moshitzky P., Ramachandran J. and Applebaum S.W. (1984) The effects of synthetic locust adipokinetic hormone on dispersed locust fat body cell preparations: cAMP induction, lipid mobilization, and inhibition of protein synthesis. Gen. comp. Endocr. 55, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Baumann E. and Penzlin H. (1984) Sequence analysis of neurohormone D, a neuropeptide of an insect Periplaneta americana. Biomed. biochim. Acta 43, K13–K16.

    PubMed  CAS  Google Scholar 

  • Baumann E. and Penzlin H. (1987) Inactivation of neurohormone D by Malpighian tubules in an insect, Periplaneta americana. J. comp. Physiol. 157B, 511–517.

    CAS  Google Scholar 

  • Bollenbacher W.E., Katahira E., O’Brien M., Gilbert L.I., Agui N. and Bamhover A. (1984) Insect prothoracicotropic hormone: Evidence for two molecular forms. Science 224, 1243–4245.

    Article  PubMed  CAS  Google Scholar 

  • Bost K.L., Smith E.M. and Blalock J.E. (1985) Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc. natn. Acad. Sci. U.S.A. 82, 1372–1375.

    Article  CAS  Google Scholar 

  • Bowers W.S. and Friedman S. (1963) Mobilization of fat body glycogen by an extract of corpus cardiacum. Nature 198, 685.

    Article  CAS  Google Scholar 

  • Bradbury A.F., Finnie M.D.A. and Smyth D.G. (1982) Mechanism of C-terminal amide formation by pituitary enzymes. Nature 298, 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Bradfield J.Y. and Keeley L.L. (1989) J. biol. Chem. (In Press).

    Google Scholar 

  • Chung J.S. and Keeley L.L. (1989) Evidence and bioassay for diuretic factors in the nervous system of larval Heliothis virescens. J. comp. Physiol. (In Press).

    Google Scholar 

  • Downer R.G.H., Orr G.L., Gole J.W.D. and Orchard I. (1984) The role of octopamine and cyclic AMP in regulating hormone release from corpora cardiaca of the American cockroach. J. Insect Physiol. 30, 457–462.

    Article  CAS  Google Scholar 

  • DuPont-Raabe M. (1951) Etude experimentale de l’adaptation chromatique chez le phasme Carausius morosus Bt. CR. Acad. Sci., Paris, 232, 886–888.

    Google Scholar 

  • Duve H. and Thorpe A. (1981) Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen. comp. Endocr. 43, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Duve H. and Thorpe A. (1984) Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowfly Calliphora vomitoria (Diptera). Cell Tissue Res. 237, 309–320.

    Article  PubMed  CAS  Google Scholar 

  • du Vigneaud V., Ressler C., Swan J.M., Roberts C.W., Katsoyannis P.G. and Gordon S. (1953) Synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Amer. chem. Soc. 75, 4879–4880.

    Article  Google Scholar 

  • Engelmann F. (1957) Die Steuerung der Ovarfunktion bei der ovoviviparen Schabe Leucophaea maderae. J. Insect Physiol. 1, 257–278.

    Google Scholar 

  • Engelmann F. (1959) The control of reproduction in Diploptera punctata (Blattaria). Biol. Bull. 116, 406–419.

    Article  Google Scholar 

  • Fernlund P. and Josefsson L. (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177, 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Fisher J.M. and Scheler R.H. (1988) Prohormone processing and the secretory pathway. J. biol. Chem. 263, 16515–16518.

    PubMed  CAS  Google Scholar 

  • Ford M. M., Hayes T. K. and Keeley L. L. (1988) Structure-activity relationships for insect hypertrehalosemic hormone: the importance of side chains and termini. In Peptides: Chemistry and Biology (Edited by Marshall, G. R.), pp. 653–655, ESCOM, Leiden.

    Google Scholar 

  • Fraenkel G., Zdarek J. and Sivasubramanian P. (1972) Hormonal factors in the CNS and hemolymph of pupariating fly larvae which accelerate puparium formation and tanning. Biol. Bull. 143, 127–139.

    Article  Google Scholar 

  • Gade G. (1985) Mode of action of the hypertrehalosaemic peptides from the American cockroach. Z. Naturforsch. 40c, 670–676.

    Google Scholar 

  • Gade G. (1986) Relative hypertrehalosaemic activities of naturally occurring neuropeptides from the AKH/RPCH family. Z. Naturforsch. 41c, 315–320.

    Google Scholar 

  • Gade G. and Rinehart K.L. (1986) Amino acid sequence of a hypertrehalosemic neuropeptide from the corpus cardiacum of the cockroach, Nauphoeta cinerea. Biochem. biophys. Res. Comm. 141, 774–781.

    Article  CAS  Google Scholar 

  • Gade G. and Rinehart K.L. (1987) Primary sequence analysis by fast atom bombardment mass spectrometry of a peptide with adipokinetic activity from the corpora cardiaca of the cricket Gryllus bimaculatus. Biochem. biophys. Res. Comm. 149, 908–914.

    Article  CAS  Google Scholar 

  • Gade G., Goldsworthy G.J., Schaffer M.H., Cook J.C. and Rinehart K.L.,. (1986) Sequence analyses of adipokinetic hormones II from corpora cardiaca of Schistocerca nitans, Schistocerca gregaria, and Locusta migratoria by fast atom bombardment mass spectrometry. Biochem. biophys. Res. Comm. 134, 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Gade G., Hilbich C., Beyreuther K. and Rinehart K.L. (1988) Sequence analyses of two neuropeptides of the AKH/RPCH-family from the lubber grasshopper, Romalea microptera. Peptides 9, 681–688.

    Article  PubMed  CAS  Google Scholar 

  • Gersch M. (1958) Neurohormonale Beeinflussung der Herztatigkeit bei der Larve von Corethra. J. Insect Physiol. 2, 281–297.

    Article  Google Scholar 

  • Goldsworthy G.J., Mallison K. and Wheeler C.H. (1986) The relative potencies of two known locust adipokinetic hormones. J. Insect Physiol. 32, 95–101.

    Article  CAS  Google Scholar 

  • Hasegawa K. (1957) The diapause hormone of the silkworm, Bombyx mori. Nature 179, 1300–1301.

    Article  CAS  Google Scholar 

  • Hardy P.M. and Sheppard P.W. (1983) Synthesis of [4,5-dehydroleu2]-and [3,4-dehydropro6]-locust adipokinetic hormone. J. chem. Soc. Perkin Trans. I, 723–734.

    Google Scholar 

  • Hayes T.K. and Keeley L.L. (1981) Cytochromogenic factor: A newly-discovered neuroendocrine agent stimulating mitochondrial cytochrome synthesis in the insect fat body. Gen. comp. Endocr. 45, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Hayes T.K., Keeley L.L. and Knight D.W. (1986) Insect hypertrehalosemic hormone: isolation and primary structure from Blaberus discoidalis cockroaches. Biochem. biophys. Res. Comm. 140, 674–678.

    Article  PubMed  CAS  Google Scholar 

  • Hayes T.K., Pannabecker T.L., Hinckley D.J., Holman G.M., Nachman R.J., Petzel D.H. and Beyenbach K.W. (1989) Leucokinins, a new family of ion transport stimulators and inhibitors in insect Malpighian tubules. Life Sci. 44, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Hayes T.K. and Gade G. (1989) Insect hypertrehalosemic hormone: the importance of side chains and termini for biological activity in Periplaneta americana. (This volume).

    Google Scholar 

  • Hayes T.K., Ford M. and Keeley, L.L. (1989) Importance of aromatic and other amino acid residues for the biological activity of insect hypertrehalosemic hormone (This volume).

    Google Scholar 

  • Hekimi S. and O’Shea M. (1987) Identification and purification of two precursors of the insect neuropeptide adipokinetic hormone. J. Neurosci. 7, 273–2784.

    Google Scholar 

  • Hekimi S. and O’Shea M. (1989) Biosynthesis of adipokinetic hormones (AKHs): Further characterization of precursors and identification of novel products of processing. J. Neurosci. 9, 996–1003.

    PubMed  CAS  Google Scholar 

  • Herault J.P.E. and Proux J.P. (1987) Cyclic AMP: the second messenger of an antidiuretic hormone from the glandular lobes of the migratory locust corpora cardiaca. J. Insect Physiol. 33, 487–492.

    Article  CAS  Google Scholar 

  • Hollingworth R.M. and Murdock L.L. (1980) Formamidine pesticides: octopamine-like actions in a firefly. Science 208, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Holman G.M., Cook B.J. and Nachman R.J. (1986) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comp. Biochem. Physiol. 85C, 219–224.

    Article  CAS  Google Scholar 

  • Holman G.M., Wright M.S. and Nachman R.J. (1988) Insect neuropeptides: Coming of age. ISI Atlas of Science: Plants and Animals 1, 129–136.

    CAS  Google Scholar 

  • Hruby V.J. (1982) Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sci. 31, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Hruby V.J. and Mosberg H.I. (1982) Conformational and dynamic considerations in peptide structure-function studies. Peptides 3, 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Hui K., Hui M.P., Ling N. and Lajtha A. (1985) Proctolin: a potent inhibitor of aminoenkephalinase. Life Sci. 36, 2309–2315.

    Article  PubMed  CAS  Google Scholar 

  • Isaac R.E. (1987) Proctolin degradation by membrane peptidases from nervous tissues of the desert locust (Schistocerca gregaria). Biochem. J. 245, 365–360.

    PubMed  CAS  Google Scholar 

  • Isaac R.E. (1988) Neuropeptide-degrading endopeptidase activity of locust (Schistocerca gregaria) synaptic membranes. Biochem. J. 255, 843–847.

    PubMed  CAS  Google Scholar 

  • Jaffe H., Raina A.K., Riley C.T., Fraser B.A., Holman G.M., Wagner R.M., Ridgway R.L. and Hayes D.K. (1986) Isolation and primary structure of a peptide from the corpora cardiaca of Heliothis zea with adipokinetic activity. Biochem. biophys. Res. Comm. 135, 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe H., Raina A.K., Riley C.T., Fraser B.A., Bird T.G., Tseng C.-M., Zhang Y.-S. and Hayes D.K. (1988a) Isolation and primary structure of a neuropeptide hormone from Heliothis zea with hypertrehalosemic and adipokinetic activities. Biochem. biophys. Res. Comm. 155, 344–350.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe H., Raina A.K., Fraser B.A., Keim P., Rao K.R., Zhang Y.-S., Lancaster J.L. and Hayes D.K. (1988b) Isolation of two neuropeptides in the AKH/RPCH-family from horseflies (Diptera). Biochem. biophys. Res. Comm. 151, 656–663.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka H., Troetschler R.G., Kramer S.J., Cesarin B.J. and Schooley D.A. (1987) Isolation and primary structure of the eclosion hormone of the tobacco hornworm, Manduca sexta. Biochem. biophys. Res. Comm. 146, 746–750.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka H., Troetschler R.G., Li J.P., Kramer S.J., Carney R.L. and Schooley D.A. (1989a) Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proc. natn Acad. Sci. U.S.A. 86, 2976–2980.

    Article  CAS  Google Scholar 

  • Kataoka H., Toschi A., Li J.P., Carney R.L., Schooley D.A. and Kramer S.J. (1989b) Identification of an allatotropin from adult Manduca sexta. Science 243, 1481–1483.

    Article  PubMed  CAS  Google Scholar 

  • Keeley L.L. (1972) Biogenesis of mitochondria: neuroendocrine effects on the development of respiratory functions in fat body mitochondria of the cockroach Blaberus discoidalis. Arch. Biochem. Biophys. 153, 8–15.

    Article  CAS  Google Scholar 

  • Keeley L.L. (1977) Developmental and endocrine regulation of cytochrome levels in fat body mitochondria of the cockroach, Blaberus discoidalis. Insect Biochem. 7, 297–301.

    Article  CAS  Google Scholar 

  • Keeley L.L. (1978) Development and endocrine regulation of mitochondrial cytochrome biosynthesis in the insect fat body. Delta-[14C]aminolevulinic acid incorporation. Arch. Biochem. Biophys. 187, 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Keeley L. L. (1981) Neuroendocrine regulation of fat body development and function. In Energy Metabolism in Insects (Edited by Downer, R. G. H.), pp. 207–237, Plenum Press, NY.

    Google Scholar 

  • Keeley L.L. and Hayes T.K. (1987) Speculations on biotechnology applications for insect neuroendocrine research. Insect Biochem. 17, 639–651.

    Article  CAS  Google Scholar 

  • Keeley L.L., Sowa S.M., Hayes T.K. and Bradfield J.Y. (1988) Neuroendocrine and juvenile hormone effects on fat body protein synthesis during the reproductive cycle in female Blaberus discoidalis cockroaches. Gen. comp. Endocr. 72, 364–373.

    Article  PubMed  CAS  Google Scholar 

  • Kono T., Nagasawa H. and Isogai A. (1987) Amino acid sequence of eclosion hormone of the silkworm, Bombyx mori. Agric. biol. Chem. 51, 2307–2308.

    Article  CAS  Google Scholar 

  • Kopec S. (1917) Experiments on metamorphosis of insects. Bull. Int. Acad. Cracovie B 57–60.

    Google Scholar 

  • Kopec S. (1922) Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. 42, 323–342.

    Article  Google Scholar 

  • Kramer K.J., Spiers R.D. and Childs C.N. (1977) Immunochemical evidence for a gastrin-like peptide in insect neuroendocrine system. Gen. comp. Endocr. 32, 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Loughton B.G. and Orchard I. (1981) The nature of the hyperglycaemic factor from the glandular lobe of the corpus cardiacum of Locusta migratoria. J. Insect Physiol. 27, 383–385.

    Article  CAS  Google Scholar 

  • Marti T., Takio K., Walsh K.A., Terzi G. and Truman J.W. (1987) Microanalysis of the amino acid sequence of the eclosion hormone from the tobacco hornworm Manduca sexta. FEBS Lett. 219, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S., Isogai A. and Suzuki A. (1985) N-terminal amino acid sequence of an insect neurohormone, melanization and reddish coloration hormone (MRCH): heterogeneity and sequence homology with human insulin-like growth factor II. FEBS Lett. 189, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Mayer R.J. and Candy D.J. (1969) Control of haemolymph lipid concentration during locust flight: an adipokinetic hormone from the corpora cardiaca. J. Insect Physiol. 15, 611–620.

    Article  CAS  Google Scholar 

  • McCann S.M. (1981) Monoaminergic and peptidergic control of anterior pituitary secretion. In Neurosecretion: Molecules, Cells, Systems. (Edited by Farner D.S. and Lederis K.), pp. 139–151. Plenum Press, New York.

    Google Scholar 

  • Nachman R.J., Holman G.M., Haddon W.F. and Ling N. (1986) Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234, 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Nachman R.J., Holman G.M. and Cook B.J. (1986) Active fragments and analogs of the insect neuropeptide leucopyrokinin: structurefunction studies. Biochem. biophys. Res. Comm. 137, 936–942.

    Article  PubMed  CAS  Google Scholar 

  • Nachman R.J., Holman G.M. and Haddon, W.F. (1988) Structural aspects of gastrin/CCK-like insect leucosulfakinins and FMRFamide. Peptides 9, 137–143.

    Article  PubMed  Google Scholar 

  • Nachman R.J., Holman G.M. and Haddon, W.F. (1989) Effect of sulfate position on myotropic activity of the gastrin/CCK-like insect leucosulfakinins. Int. J. Peptide Prot. Res. 37, 223–229.

    Google Scholar 

  • Nagasawa H., Kataoka H., Isogai A., Tamura S., Suzuki A., Mizoguchi A. and Fujiwara Y.A. (1986) Amino-acid sequence of a prothoracotropic hormone of the silkworm, Bombyx mori. Proc. nain. Acad. Sci. U.S.A. 83, 5840–5843.

    Article  CAS  Google Scholar 

  • Nambu J.R., Murphy-Erdosh C., Andrews P.C., Feistner G.J. and Scheller R.H. (1988) Isolation and characterization of a Drosophila neuropeptide gene. Neuron 1, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Nichols R., Schneuwly S.A. and Dixon J.E. (1988) Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J. biol. Chem. 263, 12167–12170.

    PubMed  CAS  Google Scholar 

  • Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y. and Matsubura K. (1985) An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J. biol. Chem. 260, 2605–2608.

    PubMed  CAS  Google Scholar 

  • Orchard I. (1982) Octopamine in insects: neurotransmitter, neurohormone, and neuromodulator. Can. J. Zool. 60, 659–669.

    Article  CAS  Google Scholar 

  • Orchard I. and Loughton B.G. (1981) Is octopamine a transmitter mediating hormone release in insects? J. Neurobiol. 12, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Orr G.L., Gole J.W.D., Jahagirdar A.P., Downer R.G.H. and Steele J.E. (1985) Cyclic AMP does not mediate the action of synthetic hypertrehalosemic peptides from the corpus cardiacum of Periplaneta americana. Insect Biochem. 15, 703–709.

    Article  CAS  Google Scholar 

  • Penzlin H., Agricola H., Eckert M. and Kusch T. (1981) Distribution of proctolin in the sixth abdominal ganglion of Periplaneta americana L. and the effect of proctolin on the ileum of mammals. Adv. Physiol. Sci. 22, 525–535.

    CAS  Google Scholar 

  • Pierce J.G. and du Vigneaud V. (1950) Preliminary studies on amino acid content of a high potency preparation of the oxytocic hormone of posterior lobe of the pituitary gland. J. biol. Chem. 182, 359–366.

    CAS  Google Scholar 

  • Popenoe N.A. and du Vigneaud V. (1954) A partial sequence of amino acids in performic acid-oxidized vasopressin. J. biol. Chem. 206, 353–360.

    PubMed  CAS  Google Scholar 

  • Proux J.P., Miller C.A., Li J.P., Carney R.L., Girardie A., Delaage M. and Schooley D.A. (1987) Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. Biochem. biophys. Res. Comm. 149 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Quistad G.B., Adams M.E., Scarborough R.M., Carney R.L. and Schooley D.A. (1984) Metabolism of proctolin, a pentapeptide neurotransmitter in insects. Life Sci. 34, 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Rafaeli A., Pines M., Stern P.S. and Applebaum S.W. (1984) Locust diuretic hormone-stimulated synthesis and excretion of cyclic-AMP: A novel Malpighian tubule bioassay. Gen. comp. Endocr. 54, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Raina A.K., Jaffe H., Kempe T.G., Keim P., Blacher R.W., Fales H.M., Riley C.T., Klun J.A., Ridgway R.L. and Hayes D.K. (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244, 796–798.

    Article  PubMed  CAS  Google Scholar 

  • Redding T.W. and Schally A.V. (1969) Studies on inactivation of TRH. Proc. Soc. exp. Biol. Med. 131, 415–418.

    PubMed  CAS  Google Scholar 

  • Robb S., Packman, L.C. and Evans P.D. (1989) Isolation, primary structure and bioactivity of SchistoFLRF-amide, a FMRF-amidelike neuropeptide from the locust, Schistocerca gregaria. Biochem. biophys. Res. Comm. 160, 850–856.

    Article  PubMed  CAS  Google Scholar 

  • Ryerse J.S. (1978) Developmental changes in Malpighian tubule fluid transport. J. Insect Physiol. 24, 315–319.

    Article  Google Scholar 

  • Samaranayaka M. (1974) Insecticide-induced release of hyperglycaemic and adipokinetic hormones of Schistocerca gregaria. Gen. comp. Endocr. 24, 424–436.

    Article  PubMed  CAS  Google Scholar 

  • Samaranayaka M. (1976) Possible involvement of monoamines in the release of adipokinetic hormone in the locust Schistocerca gregaria. J. exp. Biol. 65, 415–425.

    PubMed  CAS  Google Scholar 

  • Samaranayaka M. (1977) Role of acetylcholine in organophosphateinduced release of adipokinetic hormone in the locust Schistocerca gregaria. Pestic. Biochem. Physiol. 7, 283–288.

    Article  CAS  Google Scholar 

  • Sanger F. (1959) Chemistry of insulin. Science 129, 1340–1345.

    Article  PubMed  CAS  Google Scholar 

  • Scarborough R.M., Jamieson G.C., Kalish F., Kramer S.J., McEnroe G.A., Miller C.A. and Schooley D.A. (1984) Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc. natn. Acad. Sci. U.S.A. 81, 5575–5579.

    Article  CAS  Google Scholar 

  • Schaffer M.H. (1986) Functional and evolutionary relationships among the RPCH-AKH family of peptides. Amer. Zool. 26, 997–1005.

    CAS  Google Scholar 

  • Scharrer B. (1935) Über das Hanstromsche Organ X bei Opisthobranchiern. Pubbl. Staz. Zool. Napoli 15, 132–142.

    Google Scholar 

  • Scharrer B. (1937) Uber sekretorisch tatige Nervenzellen bei wirbellosen Tieren. Naturwissenschaften 9, 131–138.

    Article  Google Scholar 

  • Scharrer B. (1941) Neurosecretion. II. Neurosecretory cells in the central nervous system of cockroaches. J. comp. Neurol. 74, 93–108.

    Article  Google Scholar 

  • Scharrer B. and Scharrer E. (1944) Neurosecretion. VI. A comparison between the intercerebralis-cardiacum-allatum system of the insects and the hypothalamo-hypophyseal system of vertebrates. Biol. Bull. 87, 243–251.

    Google Scholar 

  • Scharrer E. (1928) Die Lichtempfindlichkeit blinder Elritzen. I. Untersuchungen über das Zwischenhirn der Fische. Z. vergl. Physiol. 7, 1–38.

    Article  Google Scholar 

  • Schneider L.E. and Taghert P.H. (1988) Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc. natn. Acad. Sci. U.S.A. 85, 1993–1997.

    Article  CAS  Google Scholar 

  • Schneiderman H.A. (1984) What entomology has in store for biotechnology. Bull. ent. Soc. Am. 30, 55–61.

    Google Scholar 

  • Schwartz L.M. and Truman J.W. (1984) Cyclic GMP may serve as a second messenger in peptide-induced muscle degeneration in an insect. Proc. natn. Acad. Sci. U.S.A.. 81, 6718–6722.

    Article  CAS  Google Scholar 

  • Singh G.J.P., Orchard I. and Loughton B.G. (1981) Octopamine-like action of formamidines on hormone release in the locust, Locusta migratoria. Pestic. Biochem. Physiol. 16, 249–255.

    Article  CAS  Google Scholar 

  • Skinner W.S., Quistad G.B., Adams M.E. and Schooley D.A. (1987) Metabolic degradation of the peptide periplanetin CC-2 in the cockroach, Periplaneta americana. Insect Biochem. 17, 433–437.

    Article  CAS  Google Scholar 

  • Smith G.E., Summers M.D. and Fraser M.J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molec. cell. Biol. 3, 2156–2165.

    PubMed  CAS  Google Scholar 

  • Smyth D.G., Stein W.H. and Moore S. (1963) The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J. biol. Chem. 227–234.

    Google Scholar 

  • Spencer I.M. and Candy D.J. (1976) Hormonal control of diacyl glycerol mobilization from fat body of the desert locust, Schistocerca gregaria. Insect Biochem. 6, 289–296.

    Article  CAS  Google Scholar 

  • Spielman A. and Williams C.M. (1966) Lethal effects of synthetic juvenile hormone on larvae of the yellow fever mosquito, Aedes aegypti. Science 154, 1043–1044.

    Article  PubMed  CAS  Google Scholar 

  • Starratt A.N. and Brown B.E. (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci. 17, 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Starratt A.N. and Steele R.W. (1984) In vivo inactivation of the insect neuropeptide proctolin in Periplaneta americana. Insect Biochem. 14, 97–102.

    Article  CAS  Google Scholar 

  • Steele J.E. (1963) The site of action of insect hyperglycemic hormone. Gen. comp. Endocr. 3, 46–52.

    Article  CAS  Google Scholar 

  • Steele R.W. and Starratt A.N. (1985) in vitro inactivation of the insect neuropeptide proctolin in haemolymph. Insect Biochem. 15 511–519.

    Article  CAS  Google Scholar 

  • Steiner D.F., Docherty K., Chan S.H., Segundo B.S. and Carroll R. (1983) Intracellular proteolytic mechanisms in the biosynthesis of hormones and peptide neurotransmitters. In Biochemical and Clinical Aspects of Neuropeptides: Synthesis, Processing, and Gene Structure. (Edited by Koch D. and Richter D.), pp. 3–13, Academic Press, NY.

    Google Scholar 

  • Stone J.V., Mordue W., Batley K.E. and Morris H.R. (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 263, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Stone J.V., Mordue W., Broomfield C.E. and Hardy P.M. (1978) Structure-activity relationships for the lipid-mobilising action of locust adipokinetic hormone. Synthesis and activity of a series of hormone analogues. Eur. J. Biochem. 89, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R.E. and Newcomb R.W. (1982) Structure function analysis of an arthropod peptide hormone: proctolin and synthetic analogues compared on the cockroach hindgut receptor. Peptides 3, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A. (1986) Prothoracicotropic hormones and neurohormones in Bombyx mori. In Insect Neurochemistry and Neurophysiology 1986 (Edited by Borkovec, A.B. and Gelman, D.B.) pgs. 2951, Humana Press, Clifton, NJ.

    Google Scholar 

  • Tager H.S., Markese J., Kramer K.J., Spiers R.D. and Childs C.N. (1976) Glucagon-like and insulin-like hormones in the insect neurosecretory system. Biochem. J. 156, 515–520.

    PubMed  CAS  Google Scholar 

  • Taylor W.L. and Dixon J. (1978) Characterization of a pyroglutamate aminopeptidase from rat serum that degrades TRH. J. biol. Chem. 19, 6934–6940.

    Google Scholar 

  • Turner C.D. and Bagnara J.T. (1976). General Endocrinology, W.B. Saunders, Philadelphia, pp. 160–166.

    Google Scholar 

  • Weeda E. (1981) Hormonal regulation of proline synthesis and glucose release in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 27, 411–417.

    Article  CAS  Google Scholar 

  • Weiner R.I. and Ganong W.F. (1978) Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol. Rev. 58, 905–976.

    PubMed  CAS  Google Scholar 

  • Williams C.M. (1946) Physiology of insect diapause: the role of the brain in the production and termination of pupal dormancy in the giant silkworm, Platysamia cecropia. Biol. Bull. 90, 234–243.

    Article  PubMed  CAS  Google Scholar 

  • Williams C.M. (1947) Physiology of insect diapause. II. Interaction between the pupal brain and prothoracic glands in the metamorphosis in the giant silkworm, Platysamia cecropia. Biol. Bull. 93, 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Williams C.M. (1952) Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol. Bull. 103, 120–138.

    Article  Google Scholar 

  • Witten J.L., Schaffer M.H., O’Shea M., Cook J.C., Hemling M.E. and Rinehart K.L. (1984) Structures of two cockroach neuropeptides assigned by fast atom bombardment mass spectrometry. Biochem. biophys. Res. Comm. 124, 350–358.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler R. and Gade G. (1984) Preliminary characterization of glycogen phosphorylase activating hormone and adipokinetic hormone from Manduca sexta corpora cardiaca. Physiol. Entomol. 9, 229–236.

    Article  CAS  Google Scholar 

  • Ziegler R., Eckart K., Schwarz H. and Keller R. (1985) Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. biophys. Res. Comm. 133, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler R., Hoff R. and Rohde M. (1988) Storage site of glycogen phosphorylase activating hormone in larvae of Manduca sexta. J. Insect Physiol. 34, 143–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Keeley, L.L., Hayes, T.K., Bradfield, J.Y. (1990). Insect Neuroendocrinology: Its Past; its Present; Future Opportunities. In: Borkovec, A.B., Masler, E.P. (eds) Insect Neurochemistry and Neurophysiology · 1989 ·. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4512-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4512-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8854-1

  • Online ISBN: 978-1-4612-4512-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics