Skip to main content

Muscarinic Receptor Regulation of Cyclic GMP and Eicosanoid Production

  • Chapter
The Muscarinic Receptors

Part of the book series: The Receptors ((REC))

Overview

For many of the cells or tissues in which muscarinic receptors are located, activation of these receptors results in elevated tissue levels of cyclic guanosine 3 ′,5 ′-monophosphate (cyclic GMP). Cyclic GMP and the enzyme that synthesizes this cyclic nucleotide are widely distributed (Goldberg and Haddox, 1977), and the muscarinic receptor is one of several receptors that mediates increased intracellular levels of cyclic GMP. Of the two forms of guanylate cyclase that exist, soluble and particulate, the muscarinic receptor is thought to activate the soluble form. This activation has generally been considered an indirect effect, involving a second messenger, since muscarinic receptors cannot activate guanylate cyclase in broken cell preparations. Calcium or a metabolite of arachidonic acid are the two most likely candidates for this second messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adesuyi, S. A., Cockrell, C. S., Gamache, D. A., and Ellis, E. F. (1985) Lipoxygenase metabolism of arachidonic acid in brain. J. Neurochem. 45, 770–776.

    PubMed  CAS  Google Scholar 

  • Ariano, M. A. (1983) Distribution of components of the guanosine 3’,5’-phosphate system in rat caudate-putamen. Neuroscience 10, 707–723.

    PubMed  CAS  Google Scholar 

  • Ariano, M. A. and Matus, A. I. (1981) Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum. J. Cell. Bio. 91, 287–292.

    CAS  Google Scholar 

  • Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3’:5’-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74, 3203–3207.

    PubMed  CAS  Google Scholar 

  • Aswad, D. W. and Greengard, P. (1981a) A specific substrate from rabbit cerebellum for guanosine 3’:5’-monophosphate-dependent protein kinase. I. Purification and characterization. J. Biol. Chem. 256, 3487–3493.

    PubMed  CAS  Google Scholar 

  • Aswad, D. W. and Greengard, P. (1981b) A specific substrate from rabbit cerebellum for guanosine 3 ’:5 ’-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3 ’:5 ’-monophosphate-dependent and adenosine 3 ’:5 ’-monophosphate-dependent protein kinases. J. Biol. Chem. 256, 3494–3500.

    PubMed  CAS  Google Scholar 

  • Bartfai, T., Breakefield, X. O., and Greengard, P. (1978) Regulation of synthesis of guanosine 3’:5’-cyclic monophosphate in neuroblastoma cells. Biochem. J. 176, 119–127.

    PubMed  CAS  Google Scholar 

  • Bazan, N. G. (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochem. Biophys. Acta 218, 1–10.

    PubMed  CAS  Google Scholar 

  • Bergstrom, S., Farnebo, L. O., and Fuxe, K. (1973) Effect of prostaglandin E2 on central and peripheral catecholamine neurons. Eur. J. Pharmacol. 21, 362–368.

    CAS  Google Scholar 

  • Birkle, D. L. and Bazan, N. G. (1984) Effect of K + depolarization on the synthesis of prostaglandins and ydroxyeicosatetra(5,8,11,14)enoic acids (HETE) in the rat retina. Evidence for esterification of 12-HETE in lipids. Biochim. Biophys. Acta 795, 564–573.

    PubMed  CAS  Google Scholar 

  • Black, A. C., Sandquist, D., West, J. R., Wamsley, J. K., and Williams, T. H. (1979) Muscarinic cholinergic stimulation increases cyclic GMP levels in rat hippocampus. J. Neurochem. 33, 1165–1168.

    PubMed  CAS  Google Scholar 

  • Bloch-Tardy, M., Fages, C., and Gonnard, P. (1980) Cyclic guanosine monophosphate in primary cultures of glial cells. J. Neurochem. 35, 612–615.

    PubMed  CAS  Google Scholar 

  • Boeynaems, J. M. and Galand, N. (1983) Cholinergic stimulation of vascular prostaglandin synthesis. Prostaglandins 26, 531–544.

    PubMed  CAS  Google Scholar 

  • Braughler, J. M. (1982) Soluble guanylate cyclase activation by nitric oxide and its reversal. Biochem. Pharmacol. 32, 811–818.

    Google Scholar 

  • Braughler, J. M., Mittal, C. K., and Murad, F. (1979) Purification of soluble guanylate cyclase from rat liver. Proc. Natl. Acad. Sci. USA 76, 219–222.

    PubMed  CAS  Google Scholar 

  • Briggs, R. G. and DeRubertis, F. R. (1979) Calcium-dependent modulation of guanosine 3 ’,5 ’-monophosphate in renal cortex. Possible relationship to calcium-dependent release of fatty acid. Biochem. Pharmacol. 29, 717–722.

    Google Scholar 

  • Brody, M. J. and Kadowitz, P. J. (1974) Prostaglandins as modulators of the autonomic nervous system. Fed. Proc. 33, 48–60.

    PubMed  CAS  Google Scholar 

  • Brooksbank, B. W. L. and Balazs, R. (1983) Superoxide dismutase and lipoperoxidation in Down’s syndrome fetal brain. Lancet 1, 881–882.

    PubMed  CAS  Google Scholar 

  • Cahill, A. L. and Perlman, R. L. (1986) Nicotinic and muscarinic agonists, phorbol esters, and agents which raise cyclic AMP levels phosphorylate distinct groups of proteins in the superior cervical ganglion. Neurochem. Res. 11, 327–338.

    PubMed  CAS  Google Scholar 

  • Casnellie, J. E. and Greengard, P. (1974) Guanosine 3’:5’-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc. Natl. Acad. Sci. USA 71, 1891–1895.

    PubMed  CAS  Google Scholar 

  • Chan-Palay, V. and Palay, S. L. (1979) Immunocytochemical localization of cyclic GMP: light and electron microscope evidence for involvement of neuroglia. Proc. Natl. Acad. Sci. USA 76, 1485–1488.

    PubMed  CAS  Google Scholar 

  • Chang, J., Blazek, E., Kreft, A. F., and Lewis, A. J. (1985) Inhibition of platelet and neutrophil phospholipase A2 by hydroxyeicosatetraenoic acids (HETEs). A novel pharmacological mechanism for regulating free fatty acid release. Biochem. Pharmacol. 34, 1571–1575.

    PubMed  CAS  Google Scholar 

  • Chia, L. S., Thompson, J. E., and Moscarello, M. A. (1984) X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer’s disease. Biochim. Biophys. Acta 775, 308–312.

    PubMed  CAS  Google Scholar 

  • Chrisman, T. D., Garbers, D. L., Parks, M. A., and Hardman, J. G. (1975) Characterization of particulate and soluble guanylate cyclases from rat lung. J. Biol. Chem. 250, 374–381.

    PubMed  CAS  Google Scholar 

  • Clark, D. L. and Linden, J. (1986) Modulation of guanylate cyclase by lipoxygenase inhibitors. Hypertension 8, 947–950.

    PubMed  CAS  Google Scholar 

  • Clyman, R. I., Blacksin, A. S., Manganiello, V. C., and Vaughan, M. (1975) Oxygen and cyclic nucleotides in human umbilical artery. Proc. Natl. Acad. Sci. USA 72, 3883–3887.

    PubMed  CAS  Google Scholar 

  • Cobbs, W. H., Barkdoll, A. E. III, and Pugh, E. N., Jr. (1985) Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Nature 317, 64–66.

    PubMed  CAS  Google Scholar 

  • Craven, P. A. and DeRubertis, F. R. (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. J. Biol. Chem. 253, 8433–8443.

    PubMed  CAS  Google Scholar 

  • Craven, P. A. and DeRubertis, F. R. (1980) Calcium and O2-dependent control of inner medullary cGMP: possible role for Ca +2-dependent arachidonate release and prostaglandin synthesis in expression of the action of osmolality on renal inner medullary guanosine 3 ’,5 ’-monophosphate. Metab. 29, 842–853.

    CAS  Google Scholar 

  • Craven, P. A. and DeRubertis, F. R. (1982) Relationship between calcium stimulation of cyclic GMP and lipid peroxidation in the rat kidney: Evidence for involvement of calmodulin and separate pathways of peroxidation in cortex versus inner medulla. Metab. 31, 103–116.

    CAS  Google Scholar 

  • DeCoster, C., Moreau, C., and Dumont, J. E. (1984) Desensitization of carbamylcholine-mediated cyclic GMP accumulation in dog thyroid slices. Biochim. Biophys. Acta 798, 235–239.

    PubMed  CAS  Google Scholar 

  • DeGeorge, J. J., Morell, P., McCarthy, K. D., and Lapetina, E. G. (1986a) Cholinergic stimulation of arachidonic acid and phosphatidic acid metabolism in C62B glioma cells. J. Biol. Chem. 261, 3428–3433.

    PubMed  CAS  Google Scholar 

  • DeGeorge, J. J., Morell, P., McCarthy, K. D., and Lapetina, E. G., (1986b) Adrenergic and cholinergic stimulation of arachidonate and phosphatidate metabolism in cultured astroglial cells. Neurochem. Res. 11, 1061–1071.

    PubMed  CAS  Google Scholar 

  • Deguchi, T. (1977) Activation of guanylate cyclase in cerebral cortex of rat by hydroxylamine. J. Biol. Chem. 252, 596–601.

    PubMed  CAS  Google Scholar 

  • Diamond, J. and Chu, E. B. (1985) A novel cyclic GMP-lowering agent, LY83583, blocks carbachol-induced cyclic GMP elevation in rabbit atrial strips without blocking the negative inotropic effects of carbachol. Can. J. Physiol. Pharmacol. 63, 908–911.

    PubMed  CAS  Google Scholar 

  • Dinnendahl, V. and Stock, K. (1975) Effects of arecoline and cholinesterase inhibitors on cyclic guanosine 3’,5’-monophosphate and adenosine 31,5 ’-monophosphate in mouse brain. NaunynSchmied. Arch. Pharmacol. 290, 297–306.

    CAS  Google Scholar 

  • El-Fakahany, E. and Richelson, E. (1980a) Effects of lanthanides on muscarinic acetylcholine receptor function. Mol. Pharmacol. 19, 282–290.

    Google Scholar 

  • El-Fakahany, E. and Richelson, E. (1980b) Involvement of calcium channels in short-term desensitization of muscarinic receptor-mediated cyclic GMP formation in mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 77, 6897–6901.

    PubMed  CAS  Google Scholar 

  • El-Fakahany, E. and Richelson, E. (1981) Phenoxybenzamine and dibenamine interactions with calcium channel effectors of the muscarinic receptor. Mol. Pharmacol. 20, 519–525.

    PubMed  CAS  Google Scholar 

  • El-Fakahany, E. and Richelson, E. (1983) Effect of some calcium antagonists on muscarinic receptor-mediated cyclic GMP formation. J. Neurochem. 40, 705–710.

    PubMed  CAS  Google Scholar 

  • Emilsson, A., Wijkander, J., and Sundler, R. (1986) Diacylglycerol induces deacylation of phosphatidylinositol and mobilization of arachidonic acid in mouse macrophages. Comparison with induction with phorbol ester. Biochem. J. 239, 685–690.

    PubMed  CAS  Google Scholar 

  • Endoh, M. (1979) Correlation of cyclic AMP and cyclic GMP levels with changes in contractile force of dog ventricular myocardium during cholinergic antagonism of positive isotropic actions of histamine, glucagon, theophylline and papaverine. Jpn. J. Pharmacol. 29, 855–864.

    PubMed  CAS  Google Scholar 

  • Ferrendelli, J. A., Steiner, A. L., McDougal, J. R., and Kipnis, D. M. (1970) The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum. Biochem. Biophys. Res. Comm. 41, 1061–1067.

    PubMed  CAS  Google Scholar 

  • Fesenko, E. E., Kolesnikow, S. S., and Lyubarsky, A. L. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313.

    PubMed  CAS  Google Scholar 

  • Fischmeister, R. and Hartzell, C. (1986) Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J. Physiol. Lond. 376, 183–202.

    PubMed  CAS  Google Scholar 

  • Fiscus, R. R., Torphy, T. J., and Mayer, S. E. (1984) Cyclic GMPdependent protein kinase activation in canine tracheal smooth muscle by methacholine and sodium nitroprusside. Biochim. Biophys. Acta 805, 382–392.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K. and Bartus, R. T. (1985) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085–1095.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., Figueiredo, J. C., and Bartus, R. T. (1984) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171–1179.

    PubMed  CAS  Google Scholar 

  • Fisher, S. F., Klinger, P. D., and Agranoff, B. W. (1983) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol. Chem. 258, 7358–7363.

    PubMed  CAS  Google Scholar 

  • Forstermann, U. and Neufang, B. (1984) The endothelium-dependent vasodilator effect of acetylcholine: Characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism. Eur. J. Pharmacol. 103, 65–70.

    PubMed  CAS  Google Scholar 

  • Forstermann, U., Mulsch, A., Bohme, E., and Busse, R. (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ. Res. 58, 531–538.

    PubMed  CAS  Google Scholar 

  • Frey, E. A. and McIsaac, R. J. (1981) A comparison of cyclic guanosine 3 ’:5 ’-monophosphate and muscarinic excitatory responses in the superior cervical ganglion of the rat. J. Pharmacol. Exp. Ther. 218, 115–121.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F. (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Ann. Rev. Pharmacol. Toxicol. 24, 175–197.

    CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376.

    PubMed  CAS  Google Scholar 

  • George, W. J., Polson, J. B., O’Toole, A. G., and Goldberg, N. D. (1970) Elevation of guanosine 3’,5’-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. Natl. Acad. Sci. USA 66, 398–403.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Bohme, E., Hofmann, F., and Schultz, G. (1981a) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett. 132, 71–74.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Hofmann, F., and Schultz, G. (1981b) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur. J. Biochem. 116, 479–486.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Brash, A. R., and Hardman, J. G. (1986) Activation of soluble guanylate cyclase by arachidonic acid and 15-lipoxygenase products. Biochim. Biophys. Acta 886, 383–389.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Hamet, P., Ross, A. H., Lawson, J. A., and Hardman, J. G. (1983) Calcium-induced release from platelet membranes of fatty acids that modulate soluble guanylate cyclase. J. Pharmacol. Exp. Ther. 226, 180–186.

    PubMed  CAS  Google Scholar 

  • Gerzer, R., Radany, E. W., and Garbers, D. L. (1982) The separation of the heme and apoheme forms of soluble guanylate cyclase. Biochem. Biophys. Res. Comm. 108, 678–686.

    PubMed  CAS  Google Scholar 

  • Glass, D. B., Frey, W. II, Carr, D. W., and Goldberg, N. D. (1977) Stimulation of human platelet guanylate cyclase by fatty acids. J. Biol. Chem. 252, 1279–1285.

    PubMed  CAS  Google Scholar 

  • Goldberg, N. D. and Haddox, M. K. (1977) Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem. 46, 823–896.

    PubMed  CAS  Google Scholar 

  • Goldberg, N. D., Graff, G., Haddox, M. K., Stephenson, J. H., Glass, D. B., and Moser, M. E. (1977) Redox modulation of splenic cell soluble guanylate cyclase activity: activation by hydrophilic and hydrophobic oxidants represented by ascorbic and dehydroascorbic acids, fatty acid hydroperoxides, and prostaglandin endoperoxides. Adv. Cycl. Nuc. Res. 9, 101–130.

    Google Scholar 

  • Gruetter, C. A. and Lemke, S. M. (1986) Comparison of endothelium-dependent relaxation in bovine intrapulmonary artery and vein by acetylcholine and A23187. J. Pharmacol. Exp. Ther. 238, 1055–1062.

    PubMed  CAS  Google Scholar 

  • Gruetter, C. A., Kadowitz, P. J., and Ignarro, L. J. (1981) Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can. J. Physiol. Pharmacol. 59, 150–156.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14.

    PubMed  CAS  Google Scholar 

  • Hanley, M. R. and Iversen, L. L. (1978) Muscarinic cholinergic receptors in rat corpus striatum and regulation of guanosine cyclic 3 ‘15 ’-monophosphate. Mol. Pharmacol. 14, 246–255.

    PubMed  CAS  Google Scholar 

  • Hartzell, H. C. and Fischmeister, R. (1986) Opposite effects of cyclic GMP and cyclic AMP on Cat + current in single heart cells. Nature 323, 273–275.

    PubMed  CAS  Google Scholar 

  • Hayaishi, O. (1983) Prostaglandin D2: A neuromodulator. Adv. Prost. Thromb. Leuk. res. 12, 333–337.

    CAS  Google Scholar 

  • Haynes, L. W., Kay, A. R., and Yau, K-W. (1986) Single cyclic GMPactivated channel activity in excised patches of rod outer segment membrane. Nature 321, 66–70.

    PubMed  CAS  Google Scholar 

  • Hemker, D. P. and Aiken, J. W. (1980) Modulation of autonomic neurotransmission by PGD2: Comparison with effects of other Prostaglandins in anesthetized cats. Prostaglandins 20, 321–332.

    PubMed  CAS  Google Scholar 

  • Hidaka, H. and Asano, T. (1977) Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc. Natl. Acad. Sci. USA 74, 3657–3661.

    PubMed  CAS  Google Scholar 

  • Hillier, K. and Templeton, W. W., Jr. (1980) Regulation of noradrenaline overflow in rat cortex by prostaglandin E2. J. Pharmacol. 70, 469–473.

    CAS  Google Scholar 

  • Hofmann, F. and Sold, G. (1972) A protein kinase activity from rat cerebellum stimulated by guanosine-3’:5’-monophosphate. Biochem. Biophys. Res. Comm. 49, 1100–1107.

    PubMed  CAS  Google Scholar 

  • Hogaboom, G. K., Emler, C. A., Butcher, F. R., and Fedan, J. S. (1982) Concerted phosphorylation of endogenous tracheal smooth muscle membrane proteins by Cat +:calmodulin-, cyclic GMP-, and cyclic AMP-dependent protein kinases. FEBS Lett. 139, 309–312.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J. and Gruetter, C. A. (1980) Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite. Biochim. Biophys. Acta 631, 221–231.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Adams, J. B., Horwitz, P. M., and Wood, K. S. (1986a) Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J. Biol. Chem. 261, 4997–5002.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Harbison, R. G., Wood, K. S., and Kadowitz, P. J. (1986b) Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: Stimulation by acetylcholine, bradykinin and arachidonic acid. J. Pharmacol. Exp. Ther. 237, 893–900.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Ballot, B., and Wood, K. S. (1984a) Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. J. Biol. Chem. 259, 6201–6207.

    Google Scholar 

  • Ignarro, L. J., Buga, G. M., Byrns, R. E., Wood, K. S., and Chandhuri, G. (1988) Endothelium-derived relaxing factor and nitric oxide possess identical pharmacological properties as relaxants of bovine arterial and venous smooth muscle. J. Pharmacol. Exp. Ther. 246, 218–226.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J. (1984b) Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmacol. Exp. Ther. 228, 682–690.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Wood, K. S., Ballot, B., and Wolin, M. S. (1984c) Guanylate cyclase from bovine lung. Evidence that enzyme activation by phenylhydrazine is mediated by iron-phenyl hemoprotein complexes. J. Biol. Chem. 259, 5923–5931.

    PubMed  CAS  Google Scholar 

  • Inui, J., Brodde, O-E., and Shumann, H. J. (1982) Influence of acetylcholine on the positive inotropic effect evoked by a-and 13adrenoceptor stimulation in the rabbit heart. Naunyn-Schmied. Arch. Pharmacol. 320, 152–159.

    CAS  Google Scholar 

  • Iwasa, Y. and Hosey, M. M. (1983) Cholinergic antagonism of betaadrenergic stimulation of cardiac membrane protein phosphorylation in situ. J. Biol. Chem. 258, 4571–4575.

    PubMed  CAS  Google Scholar 

  • Jeremy, J. Y., Mikhailidis, D. P., and Dandona, P. (1986) Prostanoid synthesis by the rat urinary bladder: evidence for stimulation through muscarine-linked calcium channels. Naunyn-Schmied. Arch. Pharmacol. 334, 463–467.

    CAS  Google Scholar 

  • Kanba, S., Kanba, K. S., and Richelson, E. (1986) The protein kinase activator, 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits muscarinic (M1) receptor-mediated inositol phosphate release and cyclic GMP formation in murine neuroblastoma cells (clone N1E-115). Eur. J. Pharmacol. 125, 155–156.

    PubMed  CAS  Google Scholar 

  • Katsuki, S. and Murad, F. (1976) Regulation of adenosine cyclic 3 ’,5 ’-monophosphate and guanosine cyclic 3’,5 ’-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol. Pharmacol. 13, 330–341.

    Google Scholar 

  • Kebabian, J. W., Steiner, A. L., and Greengard, P. (1975) Muscarinic cholinergic regulation of cyclic guanosine 3’,5 ’-monophosphate in autonomic ganglia: possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193, 474–488.

    PubMed  CAS  Google Scholar 

  • Kendall, D. A. (1986) Cyclic GMP and inositol phosphate accumulation do not share common origins in rat brain slices. J. Neurochem. 47, 1483–1489.

    PubMed  CAS  Google Scholar 

  • Kimura, H. and Murad, F. (1974) Evidence for two different forms of guanylate cyclase in rat heart. J. Biol. Chem. 249, 6910–6916.

    PubMed  CAS  Google Scholar 

  • Kuno, T., Andresen, J. W., Kamisaki, Y., Waldman, S. A., Chang, L. Y., Saheki, S., Leitman, D. C., Nakane, M., and Murad, F. (1986) Co-purification of atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem. 261, 5817–5823.

    PubMed  CAS  Google Scholar 

  • Kuo, J. F. (1974) Guanosine 3 ’,5 ’-monophosphate-dependent protein kinases in mammalian tissues. Proc. Natl. Acad. Sci. USA 71, 40374041.

    Google Scholar 

  • Lee, T-P., Kuo, J. F., and Greengard, P. (1972) Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc. Natl. Acad. Sci. USA 69, 3287–3291.

    PubMed  CAS  Google Scholar 

  • Leiber, D. and Harbon, S. (1982) The relationship between the carbachol stimulatory effect on cyclic GMP content and activation by fatty acid hydroperoxides of a soluble guanylate cyclase in the guinea pig myometrium. Mol. Pharmacol. 21, 654–663.

    PubMed  CAS  Google Scholar 

  • Lenox, R. H., Kant, G. J., and Meyerhoff, J. L. (1980) Regional sensitivity of cyclic AMP and cyclic GMP in rat brain to central cholinergic stimulation. Life Sci. 26, 2201–2209.

    PubMed  CAS  Google Scholar 

  • Levitt, P., Rakic, P., De Camilli, P., and Greengard, P. (1984) Emergence of cyclic guanosine 3 ’:5 ’-monophosphate-dependent protein kinase immunoreactivity in developing rhesus monkey cerebellum: Correlative immunocytochemical and electron microscopic analysis. J. Neurosci. 4, 2553–2564.

    PubMed  CAS  Google Scholar 

  • Liles, W. C., Hunter, D. D., Meier, K. E., and Nathanson, N. M. (1986) Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J. Biol. Chem. 261, 5307–5313.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E. and Lefkowitz, R. J. (1975) Myocardial guanylate cyclase: properties of the enzyme and effects of cholinergic agonists in vitro. Biochim. Biophys. Acta 377, 186–196.

    PubMed  CAS  Google Scholar 

  • Lindemann, J. P. and Watanabe, A. M. (1985) Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Cat + transport in guinea pig ventricles. J. Biol. Chem. 260, 13122–13129.

    PubMed  CAS  Google Scholar 

  • Linden, J. and Brooker, G. (1979) The questionable role of cyclic guanosine 3’:5’ monophosphate in heart. Biochem. Pharmacol. 28, 3351–3360.

    PubMed  CAS  Google Scholar 

  • Lingren, J. A., Hulting, A., Dahlen, S.-E., Hokfelt, T., Werner, S., and Samuelsson, B. (1984) Evidence for the occurrence of leukotrienes (LT) in the central nervous system and a neuroendocrine role of LT. Soc. Neurosci. Abstr. 10, 1129.

    Google Scholar 

  • Lunt, G. G. and Rowe, C. E. (1968) The production of unesterified fatty acid in brain. Biochim. Biophys. Acta 152, 681–693.

    PubMed  CAS  Google Scholar 

  • Luthin, G. R. and Wolfe, B. B. (1984) Comparison of [3H]pirenzepine and [3H]quinuclidinyl benzilate binding to muscarinic cholinergic receptors in rat brain. J. Pharmacol. Exp. Ther. 228, 648–655.

    PubMed  CAS  Google Scholar 

  • MacLeod, K. M. and Diamond, J. (1986) Effects of the cyclic GMP lowering agent LY83583 on the interaction of carbachol with forskolin in rabbit isolated cardiac preparations. J. Pharmacol. Exp. Ther. 238, 313–318.

    PubMed  CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F. (1984) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232, 708–716.

    Google Scholar 

  • Matsuzawa, H. and Nirenberg, M. (1975) Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells. Proc. Natl. Acad. Sci. LISA 72, 3472–3476.

    CAS  Google Scholar 

  • McKinney, M. (1987) Blockade of receptor-mediated cyclic GMP formation by hydroxyeicosatetraenoic acid. J. Neurochem. 49, 331–341.

    PubMed  CAS  Google Scholar 

  • McKinney, M. and Richelson, E. (1984) The coupling of the neuronal muscarinic receptor to responses. Ann. Rev. Pharmacol. Toxicol. 24, 121–146.

    CAS  Google Scholar 

  • McKinney, M. and Richelson, E. (1986a) Blockade of N1E-115 murine neuroblastoma muscarinic receptor function by agents that affect the metabolism of arachidonic acid. Biochem. Pharmacol. 35, 2389–2397.

    PubMed  CAS  Google Scholar 

  • McKinney, M. and Richelson, E. (1986b) Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115): Cyclic GMP formation is mediated by a low affinity agonist-receptor conformation and cyclic AMP reduction is mediated by a high affinity agonistreceptor conformation. Mol. Pharmacol. 30, 207–211.

    PubMed  CAS  Google Scholar 

  • McKinney, M., Stenstrom, S., and Richelson, E. (1985) Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115): Mediation of separate responses by high affinity and low affinity agonist-receptor conformations. Mol. Pharmacol. 27, 223–235.

    PubMed  CAS  Google Scholar 

  • McPhail, L. C., Clayton, C. C., and Snyderman, R. (1984) A potential second messenger role for unsaturated fatty acids: activation of Cat + -dependent protein kinase. Science 224, 622–625.

    PubMed  CAS  Google Scholar 

  • Miki, N., Nagano, M., and Kuriyama, K. (1976) Catalase activates cerebral guanylate cyclase in the presence of sodium azide. Biochem. Biophys. Res. Comm. 72, 952–959.

    PubMed  CAS  Google Scholar 

  • Mittal, C. K. and Murad, F. (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3 ’,5 ’-monophosphate formation. Prod. Natl. Acad. Sci. USA 74, 4360–4364.

    CAS  Google Scholar 

  • Mittal, C. K. and Murad, F. (1987) Effects of phospholipase A2 and lipoxygenase on rat cerebral cortex guanylate cyclase activity. Fed. Proc. 37, 1689.

    Google Scholar 

  • Mittal, C. K., Kimura, H., and Murad, F. (1977) Purification and properties of a protein required for sodium azide activation of guanylate cyclase. J. Biol. Chem. 252, 4384–4390.

    PubMed  CAS  Google Scholar 

  • Moskowitz, M. A., Kiwak, K. J., Hekimian, K., and Levine, L. (1984) Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 224, 886–889.

    PubMed  CAS  Google Scholar 

  • Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H. (1977) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyc. Nuc. Res. 9, 145–158.

    Google Scholar 

  • Murphy, S., Pearce, B., and Morrow, C. (1986) Astrocytes have both M1 and M2 muscarinic receptor subtypes. Brain Res. 364, 177–180.

    PubMed  CAS  Google Scholar 

  • Nakane, M., Ichikawa, M., and Deguchi, T. (1983) Light and electron microscopic demonstration of guanylate cyclase in rat brain. Brain Res. 273, 9–15.

    PubMed  CAS  Google Scholar 

  • Ohlstein, E. H., Wood, K. S., and Ignarro, L. J. (1982) Purification and properties of heme-deficient hepatic soluble guanylate cyclase: effects of heure and other factors on enzyme activation by NO, NOheme, and protoporphyrin IX. Arch. Biochem. Biophys. 218, 187–198.

    PubMed  CAS  Google Scholar 

  • Ohsako, S. and Deguchi, T. (1981) Stimulation by phosphatidic acid of calcium influx and cyclic GMP synthesis in neuroblastoma cells. J. Biol. Chem. 256, 10945–10948.

    PubMed  CAS  Google Scholar 

  • Ohsako, S. and Deguchi, T. (1984) Receptor-mediated regulation of calcium mobilization and cyclic GMP synthesis in neuroblastoma cells. Biochem. Biophys. Res. Comm. 122, 333–339.

    PubMed  CAS  Google Scholar 

  • Opmeer, F. A., Gumulka, S. W., Dinnendahl, V., and Schonhofer, P. S. (1976) Effects of stimulatory and depressant drugs on cyclic guanosine 3 ’,5 ’-monophosphate and adenosine 3 ’,5 ’-monophosphate levels in mouse brain. Naunyn-Schmied. Arch. Pharmacol. 292, 259–265.

    CAS  Google Scholar 

  • Palmer, G. C. and Duszynski, C. R. (1975) Regional cyclic GMP content in incubated tissue slices of rat brain. Eur. J. Pharmacol. 32, 375–379.

    PubMed  CAS  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.

    PubMed  CAS  Google Scholar 

  • Park, S. and Rasmussen, H. (1986) Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J. Biol. Chem. 261, 15734–15739.

    PubMed  CAS  Google Scholar 

  • Pinchasi, I., Burstein, M., and Michaelson, D. M. (1984) Metabolism of arachidonic acid and prostaglandins in the Torpedo electric organ: Modulation by the presynaptic muscarinic acetylcholine receptor. Neurosci. 13, 1359–1364.

    CAS  Google Scholar 

  • Radmark, O., Shimizu, T., Fitzpatrick, F., and Samuelsson, B. (1984) Hemoprotein catalysis of leukotriene formation. Biochim. Biophys. Acta 792, 324–329.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M. and Murad, F. (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Cir. Res. 52, 352–357.

    CAS  Google Scholar 

  • Rapoport, R. M., Draznin, M. B., and Murad, F. (1982) Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc. Natl. Acad. Sci. LISA 79, 6470–6474.

    CAS  Google Scholar 

  • Rapoport, R. M., Draznin, M. B., and Murad, F. (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306, 174–176.

    PubMed  CAS  Google Scholar 

  • Richelson, E. (1978) Desensitisation of muscarinic receptor-mediated cyclic GMP formation by cultured nerve cells. Nature 272, 366–368.

    PubMed  CAS  Google Scholar 

  • Richelson, E. and El-Fakahany, E. (1981) The molecular basis of neurotransmission at the muscarinic receptor. Biochem. Pharmacol. 30, 2887–2891.

    PubMed  CAS  Google Scholar 

  • Rillema, J. A. (1978) Activation of guanylate cyclase by arachidonic acid in mammary gland homogenates from mice. Prostaglandins 15, 857–865.

    PubMed  CAS  Google Scholar 

  • Schlichter, D. J., Casnelli, J. E., and Greengard, P. (1978) An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature 273, 61–72.

    PubMed  CAS  Google Scholar 

  • Schmidt, M. J., Sawyer, B. D., Truex, L. L., Marshall, W. S., and Fleisch, J. H. (1985) LY83583: An agent that lowers intracellular levels of cyclic guanosine 3 ’,5 ’.monophosphate, J. Pharmacol. Exp. Ther. 232, 764–769.

    PubMed  CAS  Google Scholar 

  • Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., and Sutherland, E. W. (1973) The importance of calcium ions for the regulation of guanosine 3’:5’-cyclic monophosphate levels. Proc. Natl. Acad. Sci. LISA 70, 3889–3893.

    CAS  Google Scholar 

  • Silver, P. J. and Shill, J. T. (1983) Phosphorylation of myosin light chain and phosphorylase in tracheal smooth muscle in response to KC1 and carbachol. Mol Pharmacol. 25, 267–274.

    Google Scholar 

  • Singer, H. A. and Peach, M. J. (1983) Endothelium-dependent relaxation of rabbit aorta. II. Inhibition of relaxation stimulated by methacholine and A23187 with antagonists of arachidonic acid metabolism. J. Pharmacol. Exp. Ther. 226, 796–801.

    PubMed  CAS  Google Scholar 

  • Snider, R. M. and Agranoff, B. W. (1985) Neurotransmitter-stimulated Cat + mobilization and inositol phospholipid metabolism in neuroblastoma cells. Soc. Neurosci. Abstr. 11, 96.

    Google Scholar 

  • Snider, R. M., McKinney, M., Forray, C., and Richelson, E. (1984) Neurotransmitter receptors mediate cyclic GMP formation by involvement of arachidonic acid and lipoxygenase. Proc. Natl. Acad. Sci. USA 81, 3905–3909.

    PubMed  CAS  Google Scholar 

  • Spies, C., Schultz, K-D., and Schultz, G. (1980) Inhibitory effects of mepacrine and eicosatetraynoic acid on cyclic GMP elevations caused by calcium and hormonal factors in rat ductus deferens. NaunynSchmied. Arch. Pharmacol. 311, 71–77.

    CAS  Google Scholar 

  • Stone, T. W., Taylor, D. A., and Bloom, F. E. (1975) Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science 187, 845–847.

    PubMed  CAS  Google Scholar 

  • Struck, C-J. and Glossmann, H. (1987) Soluble bovine adrenal cortex guanylate cyclase: Effect of sodium nitroprusside, nitrosamines, and hydrophobic ligands on activity, substrate specificity and cation requirement. Naunyn-Schmiedeberg’s Arch. Pharmacol. 304, 51–61.

    Google Scholar 

  • Study, R. E., Breakefield, X. O., Bartfai, T., and Greengard, P. (1978) Voltage-sensitive calcium channels regulate guanosine 3’,5’-cyclic monophosphate levels in neuroblastoma cells. Proc. Natl. Acad. Sci. USA 75, 6295–6299.

    PubMed  CAS  Google Scholar 

  • Swartz, B. E. and Woody, C. D. (1979) Correlated effects of acetylcholine and cyclic guanosine monophosphate on membrane properties of mammalian neocortical neurons. J. Neurobiol. 10, 465–488.

    PubMed  CAS  Google Scholar 

  • Swartz, B. E. and Woody, C. D. (1984) Effects of intracellular antibodies to cGMP on responses of cortical neurons of awake cats to extra-cellular application of muscarinic agonists. Exp. Neurol. 86, 388–404.

    PubMed  CAS  Google Scholar 

  • Tappel, A. L. (1955) Unsaturated lipid oxidation catalyzed by hematin compounds. J. Biol. Chem. 217, 721–733.

    PubMed  CAS  Google Scholar 

  • Waldman, S. A., Sinacore, M. S., Lewicki, J. A., Chang, L. Y., and Murad, F. (1984) Selective activation of particulate guanylate cyclase by a specific class of porphyrins. J. Biol. Chem. 259, 4038–4042.

    PubMed  CAS  Google Scholar 

  • Wamsley, J. K., West, J. R., Blach, A. C., and Williams, T. H. (1979) Muscarinic cholinergic and preganglionic physiological stimulation increase cyclic GMP levels in guinea pig superior cervical ganglion J. Neurochem. 32, 1033–1035.

    PubMed  CAS  Google Scholar 

  • Wastek, G. J., Lopez, J. R., and Richelson, E. (1980) Demonstration of a muscarinic receptor-mediated cyclic GMP-dependent hyper-polarization of the membrane potential of mouse neuroblastoma cells using [3H]tetraphenylphosphonium. Mol. Pharmacol. 19, 15–20.

    Google Scholar 

  • Weight, F. F., Petzold, G., and Greengard, P. (1974) Guanosine 3 ’,5 ’-monophosphate in sympathetic ganglia: increase associated with synaptic transmission. Science 186, 942–944.

    PubMed  CAS  Google Scholar 

  • White, A. A., Crawford, K. M., Patt, C. S., and Lad, P. J. (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J. Biol. Chem. 251, 7304–7312.

    PubMed  CAS  Google Scholar 

  • White, A. A., Karr, D. B., and Patt, C. S. (1982) Role of lipoxygenase in the 02-dependent activation of soluble guanylate cyclase from rat lung. Biochem. J. 204, 383–392.

    PubMed  CAS  Google Scholar 

  • Wolin, M. S., Wood, K. S., and Ignarro, L. J. (1982) Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J. Biol. Chem. 257, 13312–13320.

    PubMed  CAS  Google Scholar 

  • Woody, C., Gruen, E., Sakai, H., Sakai, M., and Swartz, B. (1986a) Responses of morphologically identified cortical neurons to intracellularly injected cyclic GMP. Exp. Neurol. 91, 580–595.

    PubMed  CAS  Google Scholar 

  • Woody, C. D., Bartfai, T., Gruen, E., and Nairn, A. C. (1986b) Intracellular injection of cGMP-dependent protein kinase results in increased input resistance in neurons of the mammalian motor cortex. Brain Res. 386, 379–385.

    PubMed  CAS  Google Scholar 

  • Woody, C. D., Swartz, B. E., and Gruen, E. (1978) Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158, 373–395.

    CAS  Google Scholar 

  • Yau, K-W. and Nakatani, K. (1985) Light-suppressible, cyclic GMPsensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 317, 252–255.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, K. and Kuriyama, K. (1980) Superoxide dismutase catalyzes activation of synaptosomal soluble guanylate cyclase from rat brain. Biochem. Biophys. Res. Comm. 95, 529–534.

    PubMed  CAS  Google Scholar 

  • Yousufzai, S. Y. K. and Abdel-Latif, A. A. (1984) The effects of alfal-adrenergic and muscarinic cholinergic stimulation on prostaglandin release by rabbit iris. Prostaglandins 28, 399–415.

    PubMed  CAS  Google Scholar 

  • Zwiller, J., Revel, M-O., and Malviya, A. N. (1985) Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J. Biol. Chem. 260, 1350–1353.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

McKinney, M., Richelson, E. (1989). Muscarinic Receptor Regulation of Cyclic GMP and Eicosanoid Production. In: Brown, J.H. (eds) The Muscarinic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4498-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4498-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8847-3

  • Online ISBN: 978-1-4612-4498-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics