Skip to main content

Muscarinic Cholinergic Receptor-Mediated Regulation of Cyclic AMP Metabolism

  • Chapter
The Muscarinic Receptors

Part of the book series: The Receptors ((REC))

Abstract

The role of cyclic AMP as a mediator in multifarious physiological processes is well established (Robison et al., 1971). Although its direct association with mAChR-mediated responses has been unambiguously demonstrated in only a few cases, the central role of cyclic AMP as a regulatory substance, together with the widespread observation of marked effects of mAChR agonists on cyclic AMP levels, makes it essentially irrefutable that physiological effects mediated through mAChR in many target tissues involve, at least in part, cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories, K. and Jakobs, K. H. (1981) Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via a-adrenoceptors. FEBS Lett. 130, 235–238.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1982) Cholera toxin inhibits protaglandin El but not adrenaline-stimulation of GTP hydrolysis in human platelet membranes. FEBS Lett. 146, 65–68.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1983a) Islet activating protein impairs a2-adrenoceptor mediated inhibitory regulation of human platelet adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol. 324, 196–200.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1983b) Somatostatininduced stimulation of a high-affinity GTPase in membranes of S49 lymphoma cyc and H21a variants. Mol. Pharmacol. 24, 183–188.

    PubMed  CAS  Google Scholar 

  • Asano, T., Katada, T., Gilman, A. G., and Ross, E. M. (1984) Activation of the inhibitory GTP-binding protein of adenylate cyclase, G1, by ß-adrenergic receptors in reconstituted phospholipid vesicles. J. Biol. Chem. 259, 9351–9354.

    PubMed  CAS  Google Scholar 

  • Aurbach, G. D., Fedak, S. A., Woodward, C. J., Palmer, J. S., Hauser, D., and Troxler, F. (1974) ß-Adrenergic receptor: Stereospecific interaction of iodinated 0-blocking agent with a high affinity site. Science 186, 1223–1224.

    PubMed  CAS  Google Scholar 

  • Barber, R., Ray, K. P., and Butcher, R. W. (1980) Turnover of adenosine 3′, 5′-monophosphate in WI-38 cultured fibroblasts. Biochem. 19, 2560–2567.

    CAS  Google Scholar 

  • Beavo, J. A., Hansen, R. S., Harrison, S. A., Hurwitz, R. L., Martins, T. J., and Mumby, M. C. (1982) Identification and properties of cyclic nucleotide phosphodiesterases. Mol. Cell. Endocrinol. 28, 387–410.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in signal transduction. 312, 315–321.

    CAS  Google Scholar 

  • Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1979) Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Commun. 27, 1000–1005.

    Google Scholar 

  • Birnbaumer, L. (1987) Which G-protein subunits are the active mediators in signal transduction. Trends Pharmacol. Sci. 8, 209–211.

    CAS  Google Scholar 

  • Birnbaumer, L., Codina, J., Mattera, R., Cerione, R. A., Hildebrandt, J. D., Sunyer, T., Rojas, F. J., Caron, M. G., Lefkowitz, R. J., and Iyengar, R. (1985) Regulation of hormone receptors and adenylate cyclases by guanine nucleotide binding N-proteins. Rec. Prog. Hormone Res. 41, 41–99.

    CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G. (1983) Identification of the predominant substrate for ADPribosylation by islet activating protein. J. Biol. Chem. 258, 2072–2075.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3560–3567.

    PubMed  CAS  Google Scholar 

  • Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527–532.

    PubMed  CAS  Google Scholar 

  • Bourne, H. R., Coffino, P., and Tomkins, G. M. (1975) Selection of a variant lymphoma cell deficient in adenylate cyclase. Science 187, 750–752.

    PubMed  CAS  Google Scholar 

  • Brown, B. S., Poison, J. G., and Krzanowski, J. J. (1979) Methacholineinduced attenuation of methylisobutylxanthine-and isoproterenolelevated cyclic AMP levels in isolated rat atria. Biochem. Pharmacol. 28, 948–951.

    PubMed  CAS  Google Scholar 

  • Brown, J. H. (1979) Cholinergic inhibition of catecholamine-stimulable cyclic AMP accumulation in murine atria. J. Cyclic Nucleotide Res. 5, 423–433.

    PubMed  CAS  Google Scholar 

  • Brown, J. H. and Brown, S. L. (1984) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J. Biol. Chem. 259, 2777–2781.

    Google Scholar 

  • Brown, J. H., Buxton, I. L., and Brunton, L. L. (1985a) a1-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ. Res. 57, 532–537.

    CAS  Google Scholar 

  • Brown, J. H., Goldstein, D., and Masters, S. B. (1985b) The putative M1 muscarinic receptor does not regulate phosphoinositide hydrolysis. Mol. Pharmacol. 27, 525–532.

    PubMed  CAS  Google Scholar 

  • Burns, D. L., Hewlett, E. L., Moss, J., and Vaughan, M. (1983) Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108–15 cells. J. Biol. Chem. 258, 1435–1438.

    PubMed  CAS  Google Scholar 

  • Butcher, R. W. (1978) Decreased cAMP levels in human diploid cells exposed to cholinergic stimuli. J. Cyclic Nucleotide Res. 4, 411–421.

    PubMed  CAS  Google Scholar 

  • Buxton, I. L. and Brunton, L. L. (1985) Action of the cardiac al receptor: activation of cyclic AMP degradation. J. Biol. Chem. 260, 6733–6737.

    PubMed  CAS  Google Scholar 

  • Cassel, D., and Pfeuffer, T. (1978) Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75, 2669–2673.

    PubMed  CAS  Google Scholar 

  • Cassel, D. and Selinger, Z. (1977) Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74, 3307–3311.

    PubMed  CAS  Google Scholar 

  • Cassel, D. and Selinger, Z. (1978) Mechanism of adenylate cyclase activation through the 13-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc. Natl. Acad. Sci. USA 75, 4155–4159.

    PubMed  CAS  Google Scholar 

  • Cassel, D., Levkovitz, H., and Selinger, Z. (1977) The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J. Cyclic Nucleotide Res. 3, 373–406.

    Google Scholar 

  • Cerione, R. A., Stainiszewski, C., Benovic, J. L., Lefkowitz, R. J., Caron, M. G., Gierschik, P., Somers, R., Spiegel, A. M., Codina, J., and Birnbaumer, L. (1985) Specificity of the functional interactions of the ß-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J. Biol. Chem. 260, 1493–1500.

    PubMed  CAS  Google Scholar 

  • Champion, S., Haye, B., and Jacquemin, C. (1974) Cholinergic control by endogenous prostaglandins of cAMP accumulation under TSH stimulation in the thyroid. FEBS Lett. 46, 289.

    PubMed  CAS  Google Scholar 

  • Cochaux, P., Van Sande, J., and Dumont, J. E. (1985) Islet-activating protein discriminates between different inhibitors of thyroidal cyclic AMP systems. FEBS Lett. 179, 303–306.

    PubMed  CAS  Google Scholar 

  • Codina, J., Hildebrandt, J. D., Iyengar, R., Birnbaumer, L., Sekura, R. D., and Manclark, C. R. (1983) Pertussis toxin substrate, the putative Ni component of adenylate cyclases, is an aß heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 80, 4276–4280.

    PubMed  CAS  Google Scholar 

  • Cooper, D. M. F. (1982) Bimodal regulation of adenylate cyclase. FEBS Lett. 138, 157–163.

    PubMed  CAS  Google Scholar 

  • Cooper, D. M. F., Schlegel, W., Lin, M. C., and Rodbell, M. (1979) The fat cell adenylate cyclase system. J. Biol. Chem. 254, 8927–8930.

    PubMed  CAS  Google Scholar 

  • Decoster, C., Mockel, J., Van Sande, J., Unger, J., and Dumont, J. E. (1980) The role of calcium and guanosine 3′, 5′-monophosphate in the action of acetylcholine on thyroid metabolism. Eur. J. Biochem. 104, 199–208.

    PubMed  CAS  Google Scholar 

  • Erneux, C., Van Sande, J., Dumont, J. E., and Boeynaems, J. M. (1977) Cyclic nucleotide hydrolysis in the thyroid gland. Eur. J. Biochem. 72, 137–147.

    PubMed  CAS  Google Scholar 

  • Evans, T., Hepler, J. R., Masters, S. B., Brown, J. H., and Harden, T. K. (1985a) Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors: relation to efficacy of agonists for stimulation of phosphoinositide breakdown and Ca + mobilization. Biochem. J. 131, 751–757.

    Google Scholar 

  • Evans, T., Martin, M. W., Hughes, A. R., and Harden, T. K. (1985b) Guanine nucleotide sensitive, high affinity binding of carbachol to muscarinic cholinergic receptors of 1321N1 astrocytoma cells is insensitive to pertussis toxin. Mol. Pharmacol. 27, 32–37.

    PubMed  CAS  Google Scholar 

  • Evans, T., Smith, M. M., Tanner, L. I., and Harden, T. K. (1984) Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms. Mol. Pharmacol. 26, 395–404.

    PubMed  CAS  Google Scholar 

  • Farfel, Z., Brothers, V. M., Brickman, A. S., Conte, F., Neer, R., and Bourne, H. R. (1981) Pseudohypoparathyroidism: inheritance of deficient receptor-cyclase coupling activity. Proc. Natl. Acad. Sci. USA 78, 3098–3102.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K. (1986) Inositol lipids and signal transduction at CNS muscarinic receptors. Trends Pharmacol. Sci. (Suppl.) 7, 61–65.

    Google Scholar 

  • Fleming, J. W., Strawbridge, R. A., and Watanabe, A. M. (1987) Muscarinic receptor regulation of cardiac adenylate cyclase activity. J. Mol. Cell. Cardiol. 19, 47–61.

    PubMed  CAS  Google Scholar 

  • Gardner, R. M. and Allen, D. O. (1972) The relationship between cyclic nucleotide levels and glycogen phosphorylase activity in isolated rat hearts perfused with epinephrine and acetylcholine. J. Pharmacol. Exp. Ther. 202, 346–353.

    Google Scholar 

  • George, W. J., Wilkerson, R. D., and Kadowitz, P. J. (1973) Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J. Pharmacol. Exp. Ther. 184, 228–235.

    PubMed  CAS  Google Scholar 

  • Gil, D. W. and Wolfe, B. B. (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608–616.

    PubMed  CAS  Google Scholar 

  • Gill, D. M. and Meren, R. (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 75, 3050–3054.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1984) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1–4.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1987) G-proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56, 615–649.

    PubMed  CAS  Google Scholar 

  • Gross, R. A. and Clark, R. B. (1977). Regulation of adenosine 3′, 5′ monophosphate content in human astrocytoma cells by isoproterenol. Mol. Pharmacol. 13, 242–250.

    PubMed  CAS  Google Scholar 

  • Haga, T., Ross, E. M., Anderson, H. J., and Gilman, A. G. (1977) Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc. Natl. Acad. Sci. USA 74, 2016–2020.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., Heng, M. M., and Brown, J. H. (1986a) Receptor reserve in the calcium-dependent cyclic AMP response of astrocytoma cells to muscarinic receptor stimulation: demonstration by agonistinduced desensitization, receptor inactivation, and phorbol ester treatment. Mol. Pharmacol. 30, 200–206.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., Scheer, A. G., and Smith, M. M. (1982) Differential modification of the interaction of cardiac muscarinic cholinergic and j3-adrenergic receptors with a guanine nucleotide binding site(s). Mol. Pharmacol. 21, 570–580.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., Tanner, L. I., Martin, M. W., Nakahata, N., Hughes, A. R., Hepler, J. R., Evans, T., Masters, S. B., and Brown, J. H. (1986b) Characteristics of two biochemical responses to stimulation of muscarinic cholinergic receptors. Trends Pharmacol. Sci. 7 (supplement), 14–18.

    Google Scholar 

  • Hartzell, H. C. and Fischmeister, R. (1986) Opposite effects of cyclic GMP and cyclic AMP on C2+ current in single heart cells. Nature 323, 273–275.

    PubMed  CAS  Google Scholar 

  • Harwood, J. P., Low, H., and Rodbell, M. (1973) Stimulating and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. Biol. Chem. 248, 6239–6245.

    PubMed  CAS  Google Scholar 

  • Hazeki, O. and Ui, M. (1981) Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J. Biol. Chem. 256, 2856–2862.

    PubMed  CAS  Google Scholar 

  • Heasley, L. E., Azari, J., and Brunton, L. L. (1985) Export of cyclic AMP from avian red cells: independence from major membrane transporters and specific inhibition by prostaglandin A1. Mol. Pharmacol. 27, 60–65.

    PubMed  CAS  Google Scholar 

  • Hepler, J. R., Hughes, A. R., and Harden, T. K. (1987) Evidence that muscarinic cholinergic receptors selectively interact with either the cyclic AMP or the inositol phosphate second messenger response systems. Biochem. J. 247, 793–796.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Codina, J., and Birnbaumer, L. (1984) Interaction of the stimulatory and inhibitory regulatory proteins of the adenylate cyclase system with the catalytic component of cyc- S49 mouse lymphoma cell membrane adenylate cyclase. J. Biol. Chem. 259, 13178–13185.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L. (1982) Guanine nucleotide inhibition of cyc S49 mouse lymphoma cell membrane adenylate cyclase. J. Biol. Chem. 257, 14723–14725.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Stimulation and inhibition of adenylate cyclase mediated by distinct regulatory proteins. Nature 302, 706–709.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B. and Lefkowitz, R. J. (1980) Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulation. Ann. Rev. Pharmacol. Toxicol. 20, 580–608.

    Google Scholar 

  • Hoffman, B. B., Mullikin-Kilpatrick, D., and Lefkowitz, R. J. (1980) Heterogeneity of radioligand binding to a-adrenergic receptors: analysis of guanine nucleotide regulation of agonist binding in relation to receptor subtypes. J. Biol. Chem. 255, 4645–4652.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B., Yim, S., Tsai, B. S., and Lefkowitz, R. J. (1981) Preferential uncoupling by manganese of alpha-adrenergic receptor-mediated inhibition of adenylate cyclase in human platelets, Biochem. Biophys. Res. Commun. 100, 724–731.

    PubMed  CAS  Google Scholar 

  • Hughes, A. R. and Harden, T. K. (1986) Adenosine and muscarinic cholinergic receptors attenuate cyclic AMP accumulation by different mechanisms in 1321N1 astrocytoma cells. J. Pharmacol. Exp. Ther. 237, 173–178.

    PubMed  CAS  Google Scholar 

  • Hughes, A. R., Martin, M. W., and Harden, T. K. (1984) Pertussis toxin differentiates between two mechanisms of regulation of cyclic AMP accumulation by muscarinic cholinergic receptors. Proc. Natl. Acad. Sci. USA 81, 5680–5684.

    PubMed  CAS  Google Scholar 

  • Iyengar, R. (1981) Hysteretic activation of adenylate cyclase II. Mg++ ion regulation of the activation of the regulatory component as analyzed by reconstitution. J. Biol. Chem. 256, 11042–11050.

    PubMed  CAS  Google Scholar 

  • Iyengar, R. and Birnbaumer, L. (1982) Hormone receptor modulates the regulatory component of adenylate cyclase by reducing its re-quirement for Mg++ and enhancing its extent of activation by guanine nucleotides. Proc. Natl. Acad. Sci. USA 79, 5179–5183.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H. (1979) Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol. Cell. Endocrinol. 16, 147–156.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1979) GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn-Schmiedebergs Arch. Pharmacol. 310, 113–119.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1983) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303, 177–178.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1984) Mechanisms and components involved in adenylate cyclase inhibition by hormones. Adv. Cyclic Nucleotide Res. 17, 135–143.

    CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., Minuth, M., and Schultz, G. (1985) Inhibition of adenylate cyclase. Adv. Cyclic Nucleotide Res. 19, 137–150.

    CAS  Google Scholar 

  • Jakobs, K. H., Saur, W., and Schultz, G. (1976) Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J. Cyclic Nucleotide Res. 2, 381–392.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Saur, W., and Schultz, G. (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 85, 167–170.

    PubMed  CAS  Google Scholar 

  • Jacobs, K. H., Lasch, P., Minuth, M., Aktories, K., and Schultz, G. (1982) Uncoupling of a-adrenergic-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J. Biol. Chem. 257, 2829–2833.

    Google Scholar 

  • Johnson, G. L., Kaslow, H. R., Farfel, Z., and Bourne, H. R. (1980) Genetic analysis of hormone-sensitive adenylate cyclase. Adv. Cyclic Nucleotide Res. 13, 1–38.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1980) Slow interaction of islet-activating protein with pancreatic islets during primary culture to cause reversal of a-adrenergic inhibition of insulin secretions. J. Biol. Chem. 255, 9580–9588.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1981) Islet activating protein: a modifier of receptor-mediated regulation of rat islet adenylate cyclase. J. Biol. Chem. 256, 8310–8317.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982a) ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 257, 7210–7216.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982b) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADPribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    PubMed  CAS  Google Scholar 

  • Katada, T., Bokoch, G. M., Northup, J. K., and Gilman, A. G. (1984a) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. Biol. Chem. 259, 3567–3577.

    Google Scholar 

  • Katada, T., Bokoch, G. M., Smigel, M. D., Ui, M., and Gilman, A. G. (1984b) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: subunit association and the inhibition of adenylate cyclase in S49 lymphoma cyc and wild type membranes. J. Biol. Chem. 259, 3586–3595.

    PubMed  CAS  Google Scholar 

  • Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G. (1984c) The inhibitory guanine nucleotide-binding regulation component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. Biol. Chem. 259, 3578–3585.

    PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Steiner, A. L., and Greengard, P. (1975) Muscarinic cholinergic regulation of cyclic guanosine 3′ 5′-monophosphate in autonomic ganglia: possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193, 474–488.

    PubMed  CAS  Google Scholar 

  • Koski, G. and Klee, W. A. (1981) Cyclic nucleotide-dependent protein kinases. J. Biol. Chem. 78, 4185–4189.

    CAS  Google Scholar 

  • Kuo, J. F. and Kuo, W. N. (1973) Regulation by ß-adrenergic receptor and muscarinic cholinergic receptor activation of intracellular cyclic AMP and cyclic GMP levels in rat lung slices. Biochem. Biophys. Res. Commun. 55, 660–665.

    PubMed  CAS  Google Scholar 

  • Kuo, J. F., Lee, T. P., Reyes, P. L., Walton, K. G., Donnelly, T. E., and Greengard, P. (1972) Cyclic nucleotide-dependent protein kinases. J. Biol. Chem. 247, 16–22.

    PubMed  CAS  Google Scholar 

  • Kurose, H., Katada, T., Amano, T., and Ui, M. (1983) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via a-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J. Biol. Chem. 258, 4870–4875.

    PubMed  CAS  Google Scholar 

  • Lazareno, S., Kendall, D. A., and Nahorski, S. R. (1985) Pirenzepine indicates heterogeneity of muscarinic receptors linked to cerebral inositol phospholipid metabolism. Neuropharmacol. 24, 593–595.

    CAS  Google Scholar 

  • Lee, T. P., Kuo, J. F., and Greengard, P. (1972) Role of muscarinic cholinergic receptors in regulation of guanosine 3′:5′-cyclic mono-phosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. USA 69, 3287–3291.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., Mukherjee, C., Coverstone, M., and Caron, M. G. (1974) Stereospecific [3H] (-)-alprenolol binding sites, β-adrenergic receptors and adenylate cyclase. Biochem. Biophys. Res. Commun. 60, 706–709.

    Google Scholar 

  • Levitzki, A., Atlas, D., and Steer, M. L. (1974) The binding characteristics and number of beta-adrenergic receptors on the turkey erythrocyte. Proc. Natl. Acad. Sci. USA 71, 2773–2776.

    PubMed  CAS  Google Scholar 

  • Lichtshtein, D., Boone, G., and Blume, A. (1979) Muscarinic receptor regulation of NG108–15 adenylate cyclase: Requirement for Na+ and GTP. J. Cyclic Nucleotide Res. 5, 367–375.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E. (1981) Activation and attenuation of adenylate cyclase. Biochem. J. 195, 1–13.

    PubMed  CAS  Google Scholar 

  • Lohmann, S. M., Miech, R. P., and Butcher, F. R. (1977) Effects of isoproterenol, theophylline and carbachol on cyclic nucleotide levels and relaxation of bovine tracheal smooth muscle. Biochim. Biophys. Acta 499, 238–250.

    PubMed  CAS  Google Scholar 

  • Londos, C., Cooper, D. M. F., Schlegel, W., and Rodbell, M. (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTPdependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc. Natl. Acad. Sci. USA 75, 5362–5366.

    PubMed  CAS  Google Scholar 

  • Martin, M. W., Evans, T., and Harden, T. K. (1985) Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not Ni. Biochem. J. 229, 539–544.

    PubMed  CAS  Google Scholar 

  • Masters, S. B., Harden, T. K., and Brown, J. H. (1984) Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells. Mol. Pharmacol. 26, 149–155.

    PubMed  CAS  Google Scholar 

  • Masters, S. B., Martin, M. W., Harden, T. K., and Brown, J. H. (1985) Pertussis toxin does not inhibit muscarinic receptor-mediated phosphoinositide hydrolysis or calcium mobilization. Biochem. J. 227, 933–937.

    PubMed  CAS  Google Scholar 

  • May, J. M. and Harden, T. K. (1988) Blockade of the muscarinic cholinergic receptor-stimulated inositol phosphate and cyclic AMP second messenger responses by antagonists of putative muscarinic receptor subtypes. Submitted for publication.

    Google Scholar 

  • McDonough, P. M., Eubanks, J. H., and Brown, J. H. (1987) Desensitization and recovery of muscarinic and histaminergic calcium mobilization: evidence for a common hormone sensitive calcium store in astrocytoma cells. Biochem. J. 249, 135–141.

    Google Scholar 

  • Meeker, R. B. and Harden, T. K. (1982) Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism: agonist-induced changes in nucleotide synthesis and degradation. Mol. Pharmacol. 23, 384–392.

    Google Scholar 

  • Meeker, R. B. and Harden, T. K. (1983) Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism: agonist-induced changes in nucleotide synthesis and degradation. Mol. Pharmacol. 23, 261–266.

    Google Scholar 

  • Miot, F. C., Erneux, C., Wells, J. N., and Aumont, J. E. (1984) The effects of alkylated xanthines on cyclic AMP accumulation in dog thyroid slices exposed to carbamylcholine. Mol. Pharmacol. 25, 261–266.

    PubMed  CAS  Google Scholar 

  • Moss, J. and Vaughan, M. (1977) Mechanism of action of choleragen: evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J. Biol. Chem. 252, 2455–2462.

    PubMed  CAS  Google Scholar 

  • Motulsky, H. J., Hughes, R. J., Brickman, A. S., Farfel, Z., Boume, H. R., and Insel, P. A. (1982) Platelets of pseudohypoparathyroid patients: Evidence that distinct receptor-cyclase coupling proteins mediate stimulation and inhibition of adenylate cyclase. Proc. Natl. Acad. Sci. USA 79, 4193–4197.

    PubMed  CAS  Google Scholar 

  • Murad, F., Chi, Y.-M., Rall, T. W., and Sutherland, E. W. (1962) Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3′, 5′-phosphate by preparations of cardiac muscle and liver. J. Biol. Chem. 237, 1231–1238.

    Google Scholar 

  • Nakahata, N. and Harden, T. K. (1987) Regulation of inositol trisphosphate accumulation by muscarinic cholinergic and H,-histamine receptors in human astrocytoma cells: differential induction of desensitization by agonists. Biochem. J. 241, 337–344.

    PubMed  CAS  Google Scholar 

  • Nemecek, G. M. and Honeyman, T. W. (1982) The role of cyclic nucleotide phosphodiesterase in the inhibition of cyclic AMP accumulation by carbachol and phosphatidate. J. Cyclic Nucleotide Res. 8, 395–408.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Smigel, M. D., and Gilman, A. G. (1982) The guanine nucleotide activating site of the regulatory component of adenylate cyclase: identification by ligand binding. J. Biol. Chem. 257, 11416–11423.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., andGilman, A. G. (1980) Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. USA 77, 6516–6520.

    PubMed  CAS  Google Scholar 

  • Pfeuffer, T. (1977) GTP-binding proteins in membranes and the control of adenylate cyclase activity. J. Biol. Chem. 252, 7224–7234.

    PubMed  CAS  Google Scholar 

  • Pfeuffer, T. and Helmreich, E. J. M. (1975) Activation of pigeon erythrocyte membrane adenylate cyclase by guanyl nucleotide analogue and separation of a nucleotide binding protein. J. Biol. Chem. 250, 867–876.

    PubMed  CAS  Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W. (1971) Cyclic AMP. Academic Press, New York.

    Google Scholar 

  • Rodbell, M. (1975) On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides: an explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J. Biol. Chem. 250, 5826–5834.

    PubMed  CAS  Google Scholar 

  • Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transductions. Nature (London) 284, 17–22.

    CAS  Google Scholar 

  • Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M. J. (1971) The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. J. Biol. Chem. 246, 1877–1882.

    PubMed  CAS  Google Scholar 

  • Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M., and Berman, M. (1975) Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormone: evidence of multisite transition states. Advances Cyclic Nucleotide Res. 5, 3–29.

    CAS  Google Scholar 

  • Rosenberger, L. B., Yamamura, H. I., and Roeske, W. R. (1980) Cardiac muscarinic cholinergic binding is regulated by Na’ and guanyl nucleotides. J. Biol. Chem. 255, 820–823.

    PubMed  CAS  Google Scholar 

  • Ross, E. M. and Gilman, A. G. (1977) Reconstitution of catecholaminesensitive adenylate cyclase activity: Interaction of solubilized components with receptor-replete membranes. Proc. Natl. Acad. Sci. USA 74, 3715–3719.

    PubMed  CAS  Google Scholar 

  • Ross, E. M. and Gilman, A. G. (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49, 533–564.

    PubMed  CAS  Google Scholar 

  • Ross, E. M., Howlett, A. C., Ferguson, K. M., and Gilman, A. G. (1978) Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412.

    PubMed  CAS  Google Scholar 

  • Smith, M. M. and Harden, T. K. (1984) Modification of inhibitory coupling of receptors to adenylate cyclase in NG 108–15 neuroblastoma x glioma cells by N-ethylmaleimide. J. Pharmacol. Exp. Ther. 228, 425–433.

    PubMed  CAS  Google Scholar 

  • Smith, M. M. and Harden, T. K. (1985) The mechanism(s) of muscarinic cholinergic receptor-mediated attentuation of adenylate cyclase activity in rat heart membranes. J. Cyclic Nucleotide Protein Phosphorylation Res. 10, 197–210.

    CAS  Google Scholar 

  • Smith, S. K. and Limbird, L. E. (1981) Solubilization of human platelet a-adrenergic receptors: evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78, 4026–4030.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C., Northup, J. K., Smigel, M. D., and Gilman, A. G. (1981) The regulatory component of adenylate cyclase. J. Biol. Chem. 256, 11517–11526.

    PubMed  CAS  Google Scholar 

  • Strada, S. J., Martin, M. W., and Thompson, W. J. (1984) General properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv. Cyclic Nucleotide and Protein Phosphorylation Res. 16, 13–30.

    CAS  Google Scholar 

  • Stryer, L. and Bourne, H. R. (1986) G-proteins: a family of signal transducers. Ann. Rev. Cell Biol. 2, 391–419.

    PubMed  CAS  Google Scholar 

  • Stryer, L., Hurley, J. B., and Fung, B. K.-K. (1981) First stage of amplification in the cyclic nucleotide cascade of vision. Curr. Top. Membr. Transp. 15, 93–108.

    CAS  Google Scholar 

  • Su, Y.-F., Johnson, G. L., Cubeddu, L. X., Leichtling, B. H., Ortmann, R., and Perkins, J. P. (1976) Regulation of adenosine 3′:5′ mono-phosphate content of human astrocytoma cells: mechanism of agonist-specific desensitization. J. Cyclic Nucleotide Res. 2, 271–285.

    PubMed  CAS  Google Scholar 

  • Tanner, L. I., Harden, T. K., Wells, J. N., and Martin, M. W. (1986) Identification of the phosphodiesterase regulated by muscarinic cholinergic receptors of 1321N1 human astrocytoma cells. Mol. Pharmacol. 29, 445–460.

    Google Scholar 

  • Triner, L., Vulliemoz, Y., Verosky, M., and Nahas, G. G. (1972) Acetylcholine and the cyclic AMP system in smooth muscle. Biochem. Biophys. Res. Commun. 46, 1866.

    PubMed  CAS  Google Scholar 

  • Ui, M. (1984) Islet activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory components of adenylate cyclase. Trends Pharmacol. Sci. 5, 277–279.

    CAS  Google Scholar 

  • Van Sande, J., Decoster, C., and Dumont, J. E. (1979) Effects of carbamylcholine and ionophore A23187 on cyclic 3′, 5′-AMP and cyclic 3′, 5′-GMP accumulation in dog thyroid slices. Mol. Cell. Endocrinol. 14, 45–57.

    PubMed  Google Scholar 

  • Van Sande, J., Erneux, C., and Dumont, J. E. (1977) Negative control of TSH action by iodide and acetylcholine: mechanism of action in intact thyroid cells. J. Cyclic Nucleotide Res. 3, 335–345.

    PubMed  Google Scholar 

  • Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., and Besch, H. R. (1978) Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines. J. Biol. Chem. 253, 4833–4836.

    PubMed  CAS  Google Scholar 

  • Wells, J. N. and Hardman, J. G. (1977) Cyclic nucleotide phosphodiesterase. Adv. Cyclic Nucleotide Res. 8, 119–143.

    PubMed  CAS  Google Scholar 

  • Yamamura, H., Lad, P. M., and Rodbell, M. (1977) GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J. Biol. Chem. 252, 7964–7966.

    PubMed  CAS  Google Scholar 

  • Yano, K., Higashida, H., Hattori, H., and Nozawa, Y. (1985) Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG108–15 cells. FEBS Lett. 181, 403–406.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Harden, T.K. (1989). Muscarinic Cholinergic Receptor-Mediated Regulation of Cyclic AMP Metabolism. In: Brown, J.H. (eds) The Muscarinic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4498-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4498-1_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8847-3

  • Online ISBN: 978-1-4612-4498-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics