Skip to main content

Coding and Information Processing in Neural Networks

  • Chapter
Models of Neural Networks

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Synopsis

This paper reviews some central notions of the theoretical biophysics of neural networks, viz., information coding through coherent firing of the neurons and spatio-temporal spike patterns. After an introduction to the neural coding problem we first turn to oscillator models and analyze their dynamics in terms of a Lyapunov function. The rest of the paper is devoted to spiking neurons, a pulse code. We review the current neuron models, introduce a new and more flexible one, the spike response model (SRM), and verify that it offers a realistic description of neuronal behavior. The corresponding spike statistics is considered as well. For a network of SRM neurons we present an analytic solution of its dynamics, analyze the possible asymptotic states, and check their stability. Special attention is given to coherent oscillations. Finally we show that Hebbian learning also works for low activity spatio-temporal spike patterns. The models which we study always describe globally connected networks and, thus, have a high degree of feedback. We only touch upon functional feedback, that is, feedback between areas that have different tasks. Information processing in conjunction with functional feedback is treated explicitly in a companion paper [94].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott LF, Kepler TB (1990) Model neurons: From Hodgkin Huxley to Hopfield. In: Statistical Mechanics of Neural Networks, L. Garrido (Ed.), Lecture Notes in Physics 368 (Springer, Berlin) pp. 5–18

    Google Scholar 

  2. Abbott LF (1991) Realistic synaptic inputs for model neural networks. Network 2:245–258

    MATH  Google Scholar 

  3. Abbott LF, van Vreeswijk C (1993) Asynchronous states in a network of pulse-coupled oscillators. Phys. Rev. E 48:1483–1490

    ADS  Google Scholar 

  4. Abeles M, Lass Y (1975) Transmission of information by the axon. Biol. Cy-bern. 19:121–125

    Google Scholar 

  5. Abeles M (1982) Local Cortical Circuits (Springer, Berlin)

    Google Scholar 

  6. Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex (Cam-bridge University Press, Cambridge)

    Google Scholar 

  7. Abeles M, Prut Y, Bergman H, Vaadia E, Aertsen A (1993) Intergration, synchronicity, and periodicity. In: Brain Theory, A. Aertsen (Ed.) (Elsevier, Amsterdam)

    Google Scholar 

  8. Abeles M (1994) Firing rates and well-timed events in the cerebral cortex. This volume, Ch. 3

    Google Scholar 

  9. Abramowitz M, Stegun IA (1965) Handbook of Mathematical Functions (Dover, New York)

    Google Scholar 

  10. Adrian ED (1926) The impulses produced by sensory nerve endings. J. Physiol. (London) 61:49–72

    Google Scholar 

  11. Amit DJ, Gutfreund H, Sompolinsky H (1985) Spin-glass models of neural networks. Phys. Rev. A 32:1007–1032

    MathSciNet  ADS  Google Scholar 

  12. Amit DJ, Gutfreund H, Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann. Phys. (NY) 173:30–67

    ADS  Google Scholar 

  13. Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural networks retrieving at low spike rates. I. Substrate-spike rates and neuronal gain. Network 3:259–274

    Google Scholar 

  14. Bauer HU, Pawelzik K (1993) Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly. To appear in Physica D 69

    Google Scholar 

  15. Bernander Ö, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatio-temporal integration in pyramidal cells. Proc. Natl. Acad. Sci. U.S.A. 88:11,569–11,573

    Google Scholar 

  16. Bialek W, Rieke P, de Ruyter van Stevenick RR, Warland D (1991) Reading a neural code. Science 252:1854–1857

    ADS  Google Scholar 

  17. Bindman L, Christofi G, Murphy K, Nowicky A (1991) Long-term potenti-ation (LTP) and depression (LTD) in the neocortex and hippocampus: An overview. In: Aspects of Synaptic Transmission, T.W. Stone (Ed.) (Taylor and Francis, London), Vol. 1

    Google Scholar 

  18. Brown TH, Johnston D (1983) Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. J. Neurophysiol. 50:487–507

    Google Scholar 

  19. Brown TH, Ganong AH, Kairiss EW, Keenan CL, Kelso SR (1989) Long-term potentation in two synaptic systems of the hippocampal brain slice. In: Neural Models of Plasticity, J.H. Byrne and W.O. Berry (Eds.) (Academic Press, San Diego, CA), pp. 266–306

    Google Scholar 

  20. Buhmann J, Schulten K (1986) Associative recognition and storage in a model network with physiological neurons. Biol. Cybern. 54:319–335

    MATH  Google Scholar 

  21. Bush P, Douglas RJ (1991) Synchronization of bursting action potential discharge. Neural Comput. 3:19–30

    Google Scholar 

  22. Choi MY (1988) Dynamic model of neural networks. Phys. Rev. Lett. 61:2809–2812

    MathSciNet  ADS  Google Scholar 

  23. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48:1302–1320

    Google Scholar 

  24. Cox DR (1962) Renewal Theory (Methuen, London)

    MATH  Google Scholar 

  25. Davis JL, Eichenbaum H (Eds.) (1991) Olfaction. A Model System for Computational Neuroscience (MIT Press, Cambridge, Mass.)

    Google Scholar 

  26. Dinse HRO, Krüger K, Best J (1991) Temporal structure of cortical information processing: Cortical architecture, oscillations, and nonseparability of spatio-temporal receptive field organization. In: Neuronal Cooperativity, J. Krüger (Ed.) (Springer, Berlin) pp. 68–104

    Google Scholar 

  27. Eckhorn R, Grüsser OJ, Kröller J, Pellnitz K, Pöpel B (1976) Efficiency of different neural codes: Information transfer calculations for three different neural systems. Biol. Cybern. 22:49–60

    MATH  Google Scholar 

  28. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reit-boeck HJ (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern. 60:121–130

    Google Scholar 

  29. Eckhorn R, Krause F, Nelson JI (1993) The RF cinematogram: A cross-correlation technique for mapping several visual fields at once. Biol. Cy-bern. 69:37–55

    Google Scholar 

  30. Ekeberg Ö, Wallen P, Lansner A, Traven H, Brodin L, Grillner S (1991) A computer based model for realistic simulations of neural networks. Biol. Cy-bern. 65:81–90

    Google Scholar 

  31. Eggermont JJ (1990) The Correlative Brain (Springer, Berlin)

    Google Scholar 

  32. van Enter ACD and van Hemmen JL (1984) Statistical-mechanical formalism for spin glasses. van Phys. Rev. A 29:355–365

    ADS  Google Scholar 

  33. Ermentrout GB (1985) Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol. 22:1–9

    MathSciNet  MATH  Google Scholar 

  34. Ermentrout GB (1985) The behavior of rings of coupled oscillators. J. Math. Biol. 23:55–74

    MathSciNet  MATH  Google Scholar 

  35. Ermentrout GB (1990) Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D 41:219–231

    MathSciNet  ADS  MATH  Google Scholar 

  36. Ermentrout GB (1992) Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52:1665–1687

    MathSciNet  MATH  Google Scholar 

  37. Ermentrout GB, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50:125–146, and references quoted therein

    MathSciNet  MATH  Google Scholar 

  38. Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29:195–217

    MathSciNet  MATH  Google Scholar 

  39. Eskandar EN, Richmond BJ, Hertz JA, Optican LM, Troels K (1992) Decoding of neuronal signals in visual pattern recognition. In: Advances in Neural Information Processing 4, J-E. Moody et al. (Eds.) (Morgan Kaufman, San Mateo, CA), pp. 356–363

    Google Scholar 

  40. Fitz Hugh R (1961) Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1:445–66

    Google Scholar 

  41. Freeman WJ (1975) Mass Action in the Nervous System (Academic Press, New York)

    Google Scholar 

  42. Gardner E (1988) The space of interactions in neural network models. J. Phys. A: Math. Gen. 21:257–270

    ADS  Google Scholar 

  43. Gerstner W (1990) Associative memory in a network of “biological” neurons. In: Advances in Neural Information Processing Systems 3, R.P. Lipp-mann, J.E. Moody, D.S. Touretzky (Eds.) (Morgan Kaufmann, San Mateo, CA), pp. 84–90

    Google Scholar 

  44. Gerstner W, van Hemmen JL (1992a) Associative memory in a network of spiking neurons. Network 3:139–164

    MATH  Google Scholar 

  45. Gerstner W, van Hemmen JL (1992b) Universality in neural networks: The importance of the mean firing rate. Biol. Cybern. 67:195–205

    MATH  Google Scholar 

  46. Gerstner W, Ritz R, van Hemmen JL (1993a) A biologically motivated and analytically soluble model of collective oscillations in the cortex. I. Theory of weak locking. Biol. Cybern. 68:363–374

    MATH  Google Scholar 

  47. Gerstner W, Ritz R, van Hemmen JL (1993b) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cy-bern. 69:503–515

    MATH  Google Scholar 

  48. Gerstner W (1993) Kodierung und Signalübertragung in neuronalen Systemen — Assoziative Netzwerke mit stochastisch feuernden Neuronen (Verlag Harri Deutsch, Frankfurt), Reihe Physik, Bd. 15

    Google Scholar 

  49. Gerstner W, van Hemmen JL (1993) Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. Phys. Rev. Lett. 71:312–315

    ADS  Google Scholar 

  50. Grensing D, Kühn R (1986) Random site spin glass models J. Phys. A: Math. Gen. 19:L1153–L1157

    ADS  Google Scholar 

  51. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U.S.A. 86:1698–1702

    ADS  Google Scholar 

  52. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338:334–337

    ADS  Google Scholar 

  53. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin)

    Google Scholar 

  54. Hassard B, Wan BY (1978) Bifurcation formulae derived from center manifold theory. J. Math. Anal. Appl. 63:297–312

    MathSciNet  MATH  Google Scholar 

  55. Hebb DO (1949) The Organization of Behavior (Wiley, New York)

    Google Scholar 

  56. van Hemmen JL, Kühn R (1986) Nonlinear neural networks. Phys. Rev. Lett. 57:913–916

    ADS  Google Scholar 

  57. van Hemmen JL, Grensing D, Huber A, Kühn R (1986) Elementary solu tion of classical spin glass models. Z. Phys. B 65:53–63

    MathSciNet  ADS  Google Scholar 

  58. van Hemmen JL, Grensing D, Huber A, Kühn R (1988) Nonlinear neural networks I and II. J. Stat. Phys. 50:231–257 and 259-293

    ADS  MATH  Google Scholar 

  59. van Hemmen JL, Gerstner W, Herz AVM, Kühn R, Sulzer B, Vaas M (1990) Encoding and decoding of patterns which are correlated in space and time. In: Konnektionismus in Artificial Intelligence und Kognitions-forschung, G. Dorffner (Ed.) (Springer-Verlag, Berlin), pp. 153–162

    Google Scholar 

  60. van Hemmen JL, Ioffe LB, Kühn R, Vaas M (1990) Increasing the efficiency of a neural network through unlearning. Physica A 163:386–392

    ADS  Google Scholar 

  61. van Hemmen JL, Kühn R (1991) Collective phenomena in neural networks. In: Models of Neural Networks, E. Domany, J.L. van Hemmen, K. Schulten (Eds.) (Springer-Verlag, Berlin), pp. 1–105

    Google Scholar 

  62. van Hemmen JL, Wreszinski WF (1993) Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators J. Stat. Phys. 72:145–166

    ADS  MATH  Google Scholar 

  63. Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, CA)

    Google Scholar 

  64. Herz AVM, Sulzer B, Kühn R, van Hemmen JL (1988) The Hebb rule: Storing static and dynamic objects in an associative neural network. Europhys. Lett. 7:663–669.

    ADS  Google Scholar 

  65. Herz AVM, Sulzer B, Kühn R, van Hemmen JL (1989) Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol. Cybern. 60:457–467

    MATH  Google Scholar 

  66. Herz AVM, Li Z, van Hemmen JL (1991) Statistical mechanics of temporal association in neural networks with transmission delays. Phys. Rev. Lett. 66:1370–1373

    MathSciNet  ADS  MATH  Google Scholar 

  67. Hirsch MW, Smale S (1974) Differential Equations, Dynamical Systems, and Linear Algebra (Academic Press, New York), Chap. 9

    MATH  Google Scholar 

  68. Hodgkin AL, Huxley AF (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London) 117:500–544

    Google Scholar 

  69. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79:2554–2558

    MathSciNet  ADS  Google Scholar 

  70. Hopfield JJ (1984) Neurons with graded response have computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81:3088–3092

    ADS  Google Scholar 

  71. Horn D, Usher M (1989) Neural networks with dynamical thresholds. Phys. Rev. A 40:1036–1044

    ADS  Google Scholar 

  72. Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc. R. Soc. London Ser. B 198:1–59

    ADS  Google Scholar 

  73. Iooss G, Joseph DD (1980) Elementary Stability and Bifurcation Theory (Springer, Berlin), Chap. V; to be fair, this book is explicit but not “elementary.”

    Google Scholar 

  74. Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable Cells (Clarendon Press, Oxford)

    Google Scholar 

  75. Kandel ER, Schwartz JH (1985) Principles of Neural Science, 2nd Ed. (Elsevier, Amsterdam)

    Google Scholar 

  76. Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. U.S.A. 83:5326–5330

    ADS  Google Scholar 

  77. König P, Schulen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Comput. 3:155–166

    Google Scholar 

  78. Konishi M (1986) Centrally synthesized maps of sensory space. Trends in Neurosci. 9:163–168

    Google Scholar 

  79. Kopell N (1986) Phase methods for coupled oscillators and related topics: An annnotated bibliography J. Stat. Phys. 44:1035–1042

    Google Scholar 

  80. Krauth W, Mézard M (1987) Learning algorithms with optimal stability in neural networks. J. Phys. A: Math. Gen. 20:L745–L752

    ADS  Google Scholar 

  81. Krüger J (1983) Simultaneous individual recordings from many cerebral neurons: Techniques and results. Rev. Physiol. Biochem. Pharmacol. 98:177–233

    Google Scholar 

  82. Krüger J, Aiple F (1988) Multielectrode investigation of monkey striate cortex: Spike train correlations in the infragranular layers. J. Neurophysiol. 60:798–828

    Google Scholar 

  83. Krüger J, Becker JD (1991) Recognizing the visual stimulus from neuronal discharges. Trends in Neurosci. 14:282–286

    Google Scholar 

  84. Kuffler SW, Nicholls JG, Martin AR (1984) From Neuron to Brain, 2nd Ed. (Sinauer, Sunderland, Mass.)

    Google Scholar 

  85. Kuramoto Y (1975) Self-entrainment of a population of coupled nonlinear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, H. Araki (Ed.) (Springer, Berlin), pp. 420–422

    Google Scholar 

  86. Kuramoto Y (1984) Cooperative dynamics of oscillator community. Progr. Theor. Phys. Suppl. 79:223–240

    ADS  Google Scholar 

  87. Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence (Springer, Berlin), pp. 68–77

    Google Scholar 

  88. Kuramoto Y, Nishikawa I (1987) Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys. 49:569–605

    MathSciNet  ADS  MATH  Google Scholar 

  89. Lamperti J (1966) Probability (Benjamin, New York), Chap. 7

    MATH  Google Scholar 

  90. Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55:1268–1282

    Google Scholar 

  91. Larson J, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988

    ADS  Google Scholar 

  92. Little WA, Shaw GL (1978) Analytical study of the memory storage capacity of a neural network. Math. Biosci. 39:281–290

    MathSciNet  MATH  Google Scholar 

  93. MacKay DM, McCulloch WS (1952) The limiting information capacity of a neuronal link. Bull, of Math. Biophy. 14:127–135

    Google Scholar 

  94. von der Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol. Cybern. 67 233–242

    MATH  Google Scholar 

  95. Matthews PC, Strogatz SH (1990) Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65:1701–1704

    MathSciNet  ADS  MATH  Google Scholar 

  96. Mirollo RE, Strogatz SH (1990) Jump bifurcation and hysteresis in an infinite-dimensional dynamical system of coupled spins. SIAM J. Appl. Math. 50:108–124

    MathSciNet  MATH  Google Scholar 

  97. Mirollo RE, Strogatz SH (1990) Synchronization of pulse coupled biological oscillators. SIAM J. Appl. Math. 50:1645–1662

    MathSciNet  MATH  Google Scholar 

  98. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc. IRE 50:2061–2070

    Google Scholar 

  99. Neven H, Aertsen A (1992) Rate coherence and event coherence in the visual cortex: A neuronal model of object recognition. Biol. Cybern. 67:309–322

    Google Scholar 

  100. Niebur E, Kammen DM, Koch C, Rudermann D, Schuster HG (1991) Phase-coupling in two-dimensional networks of interacting oscillators. In: Advances in Neural Information Processing Systems 3, R.P. Lippmann, J.E. Moody, D.S. Touretzky (Eds.) (Morgan Kaufmann, San Mateo, CA), pp. 123–127

    Google Scholar 

  101. Optican LM, Richmond BJ (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior cortex: III. Information theoretic analysis. J. Neurophysiol. 57:162–178

    Google Scholar 

  102. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7:391–418

    Google Scholar 

  103. van der Pol B (1927) Forced oscillations in a circuit with nonlinear resistance (reception with reactive triode). The London, Edinburgh, and Dublin Philos. Mag. and J. Sci. 3:65–80

    Google Scholar 

  104. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, R.F. Reiss (Ed.) (Stanford University Press), pp. 73–97

    Google Scholar 

  105. Rapp M, Yarom Y, Segev I (1992) The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Comput. 4:518–533

    Google Scholar 

  106. Reitboeck HJA (1983) A multielectrode matrix for studies of temporal signal correlations within neural assemblies. In: Synergetics of the Brain, E. Basar et al. (Eds.) (Springer, Berlin), pp. 174–182

    Google Scholar 

  107. Richmond BJ, Optican LM, Podell M, Spitze H (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior cortex: I. Response characteristics. J. Neurophysiol. 57:132–146

    Google Scholar 

  108. Ritz R, Gerstner W, van Hemmen JL (1994) Associative binding and segregation in a network of spiking neurons. This volume, Ch. 5

    Google Scholar 

  109. Rotter S, Heck D, Aertsen A, Vaadia E (1993) A stochastic model for networks of spiking cortical neurons: Time-dependent description on the basis of membrane currents. In: Gene, Brain, Behavior, H. Eisner and M. Heisenberg (Eds.) (Thieme, Stuttgart), p. 491

    Google Scholar 

  110. Rudin W (1974) Real and Complex Analysis (McGraw-Hill, New York), p. 63

    MATH  Google Scholar 

  111. de Ruyter van Steveninck RR, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences. Proc. R. Soc. London Ser. B 234:379–414

    ADS  Google Scholar 

  112. Sakaguchi H, Shinomoto S, Kuramoto Y (1987) Local and global self-entrainments in oscillator lattices. Progr. Theor. Phys. 77:1005–1010

    ADS  Google Scholar 

  113. Sakaguchi H, Shinomoto S, Kuramoto Y (1988) Mutual entrainaient in oscillator lattices with nonvariational-type interactions. Progr. Theor. Phys. 79:1069–1079

    MathSciNet  ADS  Google Scholar 

  114. Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses. II. Desynchronization. Neural Comput. 3:167–177

    Google Scholar 

  115. Schuster HG and Wagner P (1990a) A model for neuronal oscillations in the visual cortex: 1. Mean-field theory and derivation of the phase equations. Biol. Cybern. 64:77–82

    MATH  Google Scholar 

  116. Schuster HG and Wagner P (1990b) A model for neuronal oscillations in the visual cortex: 2. Phase description and feature dependent synchronization. Biol. Cybern. 64:83–85

    MATH  Google Scholar 

  117. Singer W (1991) The formation of cooperative cell assemblies in the visual cortex. In: Neural Cooperativity, J. Krüger (Ed.) (Springer, Berlin), pp. 165–183

    Google Scholar 

  118. Singer W (1994) The role of synchrony in neocortical processing and synap-tic plasticity. This volume, Ch. 4

    Google Scholar 

  119. Sompolinsky H, Golomb D, and Kleinfeld D (1990) Global processing of visual stimuli in a neural network of coupled oscillators. Proc. Natl. Acad. Sci. U.S.A. 87:7200–7204

    ADS  Google Scholar 

  120. Sompolinsky H, Golomb D, Kleinfeld D (1991) Cooperative dynamics in visual processing. Phys. Rev. A 43:6990–7011

    ADS  Google Scholar 

  121. Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys. J. 7:797–826

    Google Scholar 

  122. Stein RB (1967) The frequency of nerve action potentials generated by applied currents. Proc. R. Soc. London Ser. B167:64–86

    ADS  Google Scholar 

  123. Strogatz SH, Mirollo RE (1988) Collective synchronization in lattices of nonlinear oscillators with randomness. J. Phys. A: Math. Gen. 21:L699–L705

    MathSciNet  ADS  Google Scholar 

  124. Strogatz SH, Mirollo RE (1991) Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63:613–635

    MathSciNet  ADS  Google Scholar 

  125. Strogatz SH, Mirollo RE, Matthews PC (1992) Coupled nonlinear oscillators below the synchronization threshold: Relaxation be generalized Landau damping. Phys. Rev. Lett. 68:2730–2733

    MathSciNet  ADS  MATH  Google Scholar 

  126. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    ADS  Google Scholar 

  127. Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol.66:635–

    Google Scholar 

  128. Tsodyks M, Mitkov I, Sompolinsky H (1993) Patterns of synchrony in inhomogeneous networks of oscillators with pulse interaction. Phys. Rev. Lett. 71:1281–1283

    ADS  Google Scholar 

  129. Usher M, Schuster HG, Niebur E (1993) Dynamics of populations of integrate-and-fire neurons, partial synchronization and memory. Neural Comput. 5:570–586

    Google Scholar 

  130. Varadhan SRS (1980) Diffusion Problems and Partial Differential Equations (Springer, Berlin), p. 266 et seq.

    Google Scholar 

  131. Wang D, Buhmann J, von der Malsburg C (1990) Pattern segmentation in associative memory. Neural Comput.2:94–

    Google Scholar 

  132. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12:1–24

    ADS  Google Scholar 

  133. Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: A system for simulating neural networks. In: Advances in Neural Information Processing Systems, D. Touretzky (Ed.) (Morgan Kaufmann, San Mateo, CA), pp. 485–492

    Google Scholar 

  134. Wong RKS, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A. 76:986–990

    ADS  Google Scholar 

  135. Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Methods in Neuronal Modeling, from Synapses to Networks, C. Koch and I. Segev (Eds.) (MIT Press, Cambridge, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gerstner, W., van Hemmen, J.L. (1994). Coding and Information Processing in Neural Networks. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds) Models of Neural Networks. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4320-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4320-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8736-0

  • Online ISBN: 978-1-4612-4320-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics