Skip to main content

Multifactor Interaction Network of Carcinogenesis — A “Tour Guide”

  • Chapter
Chemical Induction of Cancer

Abstract

Many exogenous and endogenous factors influence or in some instances can actually determine the outcome of the administration of a chemical carcinogen. The multiplicity of these factors outdates the classical concept that a given carcinogen is the sole etiological agent in the “causation of a cancer”, except when under controlled laboratory conditions or resulting from well-defined occupational or lifestyle exposures. In the same framework the significance of the search for “threshold” of carcinogens acquires an illusory character unless nutritional, genetic, lifestyle, and stress factors, and exposure to radiations, viruses, and a host of environmentally occurring chemicals—such as immunotoxicants, modifiers of mixed-function oxidases (MFO) and of endocrine balance, and antagonists and/or synergists-are taken into account (cf. 1). In addition, the majority of the factors that can modulate carcinogenesis directly and indirectly (Table 1) influence the effect of each other, so that the totality forms a complex, interwoven interaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trosko, J. E., and Chang, C.-C.: Potential Role of Intercellular Communication in the Rate-Limiting Step in Carcinogenesis. In “Cancer and the Environment-Possible Mechanisms of Threshold for Carcinogens and Other Toxic Substances” (J. A. Cimino, H. B. Demopoulos, M. Kushner, H. Uehleke, B. L. Van Duuren, B. M. Wagner, and V. R. Young, eds.). Mary Ann Liebert, New York, 1983, p. 5.

    Google Scholar 

  2. Chartrand, G.: “Introductory Graph Theory”. Dover, New York, 1977.

    Google Scholar 

  3. Laue, R.: “Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissenschaften”. Friedrich Vieweg, Braunschweig, Germany, 1971.

    Google Scholar 

  4. Harary, F.: “Graph Theory”. Addison-Wesley, Reading, England, 1969.

    Google Scholar 

  5. Forrester, J. W.: “Principles of Systems”. Wright-Allen Press, Cambridge, Massachusetts, 1968.

    Google Scholar 

  6. Forrester, J. W.: “World Dynamics”. Wright-Allen Press, Cambridge, Massachusetts, 1971.

    Google Scholar 

  7. Meadows, D. H., Meadows, D. L., Randers, J., and Behrens, W. W., III: “The Limits to Growth”. Signet/New American Library, New York, 1972.

    Google Scholar 

  8. Liotta, L. A.: Oncogene Induction of Metastases. In “Metastasis”, Ciba Foundation Symp. No. 141. Wiley, New York, 1988, p. 94.

    Google Scholar 

  9. Tarin, D.: Molecular Genetics of Metastasis. In “Metastasis”, Ciba Foundation Symp. No. 141. Wiley, New York, 1988, p. 149.

    Google Scholar 

  10. Egan, S. E., Wright, J. A., and Greenberg, A. H.: Environ. Health Perspect. 93, 91 (1991).

    PubMed  CAS  Google Scholar 

  11. Feldman, M., Gelber, C., Plaksin, D., Kushtai, G., and Eisenbach, L.: The Reversal of the Metastatic Phenotype by Gene Transfer. In “Metastasis”, Ciba Foundation Symp. No. 141. Wiley, New York, 1988, p. 170.

    Google Scholar 

  12. Ames, B. N., and Swirsky-Gold, L.: Mutat. Res. 250, 3 (1991).

    PubMed  CAS  Google Scholar 

  13. Engelman, R. W., Day, N. K., and Good, R. A.: Proc. Soc. Exp. Biol. Med. 203, 13 (1993).

    PubMed  CAS  Google Scholar 

  14. Satoh, T., Nakafuku, M., and Kaziro, Y.: J. Biol. Chem. 1992 Minireview Compendium, p. 24149.

    Google Scholar 

  15. Iyengar, R., and Birnbaumer, L.: “G Proteins”. Academic Press, San Diego, 1990.

    Google Scholar 

  16. Simon, M. I., Strathman, M. P., and Gautam, N.: Science 252, 802 (1991).

    PubMed  CAS  Google Scholar 

  17. Milligan, G., and Wakelam, M., eds.: “G Proteins-Signal Transduction and Disease”. Academic Press, San Diego, 1992.

    Google Scholar 

  18. Ullrich, S. J., Anderson, C. W., Mercer, W. E., and Appella, E., J. Biol. Chem. 1992 Minireview Compendium, p. 15259.

    Google Scholar 

  19. Agoff, S. N., Hou, J., Linzer, D. I. H., and Wu, B.: Science 259, 84 (1993).

    PubMed  CAS  Google Scholar 

  20. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M.: Cell 56, 77 (1989).

    PubMed  CAS  Google Scholar 

  21. Heldin, C.-H., Betsholtz, C., Claesson-Welsh, L. and Westermark, B.: Biochim. Biophys. Acta 907, 219 (1987).

    PubMed  CAS  Google Scholar 

  22. Stubblefield, E.: Mol. Carcinogenesis 4, 257 (1991).

    CAS  Google Scholar 

  23. Schüller, H. M.: Biochem. Pharmacol. 42, 1511 (1991).

    PubMed  Google Scholar 

  24. Weinberg, R. A.: Cancer Res. 49, 3713 (1989).

    PubMed  CAS  Google Scholar 

  25. Boyd, J. A., and Barrett, J. C.: Mol. Carcinogenesis 3, 325 (1990).

    CAS  Google Scholar 

  26. Bouck, N. P., and Benton, B. K.: Chem. Res. Toxicol. 2, 1 (1989).

    PubMed  CAS  Google Scholar 

  27. Weinberg, R. A.: Mol. Carcinogenesis 3, 3 (1990).

    CAS  Google Scholar 

  28. Tomei, L. D.: Apoptosis-A Program for Death or Survival? In “Apoptosis-The Molecular Basis of Cell Death” (L. D. Tomei and F. O. Cope, eds.). Cold Spring Harbor Laboratory Press, New York, 1991, p. 279.

    Google Scholar 

  29. Thompson, H. J., Strange, R., Schedin, P. J.: Cancer Epidemiol., Biomarkers, Prevention 1, 597 (1992).

    CAS  Google Scholar 

  30. Marx, J.: Research News in Science 259, 760 (1993).

    CAS  Google Scholar 

  31. Boveris, A., Oshino, N., and Chance, B.: Biochem. J. 128, 617 (1972).

    PubMed  CAS  Google Scholar 

  32. Loschen, G. A., Azzi, A., Richter, C., and Flohe, L.: FEBS Lett. 41, 68 (1974).

    Google Scholar 

  33. Konstantinov, A. A., Peskin, A. V., Popova, E. Y., Khomutor, G. B., and Runge, E. K.: Biochim. Biophys. Acta 894, 1 (1987).

    PubMed  CAS  Google Scholar 

  34. Reddy, J. K., Warren, J. R., Reddy, M. K., and Lalwain, N. D.: Ann. N. Y. Acad. Sci. 386, 81 (1982).

    PubMed  CAS  Google Scholar 

  35. Lazarow, P. B.: Catabolic Functions of Peroxisomes: Modification by Hypolipidemic Drugs. In “Cancer and the Environment-Possible Mechanisms of Threshold for Carcinogens and Other Toxic Substances” (J. A. Cimino, H. B. Demopoulos, M. Kushner et al., eds.). Mary Ann Liebert, New York, 1983, p. 101.

    Google Scholar 

  36. Archer, J.: Med Hypotheses 5, 1257 (1979).

    PubMed  CAS  Google Scholar 

  37. Mossman, B. T., and Landesman, J. M.: Chest 83, Suppl. 50 (1983).

    Google Scholar 

  38. Mossman, B. T.: Environ. Carcino. Rev. C6, 151 (1988).

    CAS  Google Scholar 

  39. Cerutti, P., Larsson, R., and Krupitza, G.: Mechanisms of Oxidant Carcinogenesis. In “Genetic Mechanisms in Carcinogenesis and Tumor Progression” (C. C. Harris and L. A. Liotta, eds.). Wiley-Liss, New York, 1990, p. 69.

    Google Scholar 

  40. Cerutti, P.: Tumor Promotion by Oxidants. In “Theories of Carcinogenesis” (O. H. Iversen, ed.). Hemisphere, Washington, D.C. 1988, p. 221.

    Google Scholar 

  41. Kliever, S. A., Umesone, D. I., Mangelsdorf, R. M., and Evans, R. M.: Nature 355, 446 (1992).

    Google Scholar 

  42. Kliever, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M.: Nature 358, 771 (1992).

    Google Scholar 

  43. Krahling, J. B., and Tolbert, N. E.: Ann. N. Y. Acad. Sci. 386, 433 (1982).

    CAS  Google Scholar 

  44. Dabholkar, A. S.: Ann. N. Y. Acad. Sci. 386, 475 (1982).

    CAS  Google Scholar 

  45. Kripke, M. L., Pitcher, H., and Longstreth, J. D.: Environ. Carcino. Rev. C7, 53 (1989).

    CAS  Google Scholar 

  46. Sasaki, M.: Cytogenet. Cell Genet. 33, 160 (1982).

    PubMed  CAS  Google Scholar 

  47. Sandberg, A. A.: Cancer Genet. Cytogenet. 8, 277 (1983).

    PubMed  CAS  Google Scholar 

  48. Barrett, J. C., Thomassen, D. G., and Hesterberg, J. W.: Ann. N.Y. Acad. Sci. 407, 291 (1983).

    PubMed  CAS  Google Scholar 

  49. Hesterberg, T. W., Oshimura, M., Brady, A. R., and Barrett, C. J.: Asbestos and Silica Induce Morphological Transformation of Mammalian Cells in Culture: A Possible Mechanism. In “Silica, Silicosis and Cancer” (D. F. Goldsmith, D. M. Winn, and C. M. Shy, eds.). Praeger, New York, 1986, p. 177.

    Google Scholar 

  50. Phillips, R. A.: The Genetic Basis of Cancer. In “The Basic Science of Oncology” (I. F. Tannock and R. P. Hill, eds.). Pergamon, New York, 1987, p. 24.

    Google Scholar 

  51. Oshimura, M., Hesterberg, T. W., Tsutsiu, T., and Barrett, J. C.: Cancer Res. 44, 5017 (1984).

    PubMed  CAS  Google Scholar 

  52. Barrett, J. C., Wong, A., and McLachlan, J. A.: Science 212, 1402 (1981).

    PubMed  CAS  Google Scholar 

  53. Jackson, M. A., Stack, H. F. and Waters, M. D.: Mutat. Res. 296, 241 (1993).

    PubMed  CAS  Google Scholar 

  54. Lijinsky, W.: Environ. Carcino. Rev. C8, 45 (1990).

    CAS  Google Scholar 

  55. Mulvihill, J. J.: Genetic Repertory of Human Neoplasia. In “Genetics of Human Cancer” (J.J. Mulvihill, R. W. Miller, and J. F. Fraumeni, Jr., eds.). Raven Press, New York, 1977, p. 137.

    Google Scholar 

  56. Balcer-Kubiczek, E. K., and Harrison, G. H.: Carcinogenesis 6, 859 (1985).

    PubMed  CAS  Google Scholar 

  57. Lin, J. C., and Peterson, W. D.: J. Bioeng. 1, 471 (1977).

    Google Scholar 

  58. Alam, M. T., Barthaker, N., Lambert, N. G., and Kastiya, S. S.: Can. J. Genet. Cytol. 20, 23 (1978).

    PubMed  CAS  Google Scholar 

  59. Barrett, J. C., Tsutsui, T., Tlsty, T., and Oshimura, M.: Role of Genetic Instability in Carcinogenesis. In “Genetic Mechanisms in Carcinogenesis and Tumor Progression” (C. C. Harris and L. A. Liotta, eds.). Wiley-Liss, New York, 1990, p. 97.

    Google Scholar 

  60. Wright, S.: Am. Naturalist 90, 5 (1956).

    Google Scholar 

  61. Tomatis, L., Narod, S., and Yamasaki, H.: Carcinogenesis 13, 145 (1992).

    PubMed  CAS  Google Scholar 

  62. Napalkov, N. P., Rice, J. M., Tomatis, L., and Yamasaki, H., eds.: “Perinatal and Multigeneration Carcinogenesis”, IARC Sci. Publ. No. 96. Internat. Agency for Res. on Cancer, Lyon, 1989.

    Google Scholar 

  63. Woo, Y.-T., Lai, D. Y., Arcos, J. C., and Argus, M. F.: “Chemical Induction of Cancer-Structural Bases and Biological Mechanisms”, Vol. IIIC: Natural, Metal, Fiber, and Macromolecular Carcinogens. Academic Press, San Diego, 1988, Chap. 5.5.3, p. 555.

    Google Scholar 

  64. Riley, P. A.: Free Radical Res. Commun. 11, 59 (1990).

    CAS  Google Scholar 

  65. Jablonka, E., and Lamb, M. J.: J. Theoret. Biol. 139, 69 (1989).

    CAS  Google Scholar 

  66. Holliday, R., and Pugh, J. E.: Science 187, 226 (1975).

    PubMed  CAS  Google Scholar 

  67. Riggs, A. D.: Cytogenet. Cell Genet. 14, 9 (1975).

    PubMed  CAS  Google Scholar 

  68. Razin, A., and Riggs, A. D.: Science 210, 604 (1980).

    PubMed  CAS  Google Scholar 

  69. Doerfler, W.: Annu. Rev. Biochem. 52, 93 (1983).

    PubMed  CAS  Google Scholar 

  70. Roodyn, D. B., and Wilkie, D.: “The Biogenesis of Mitochondria”. Methuen, London, 1968, p. 12.

    Google Scholar 

  71. Wallace, D. C.: Science 256, 628 (1992).

    PubMed  CAS  Google Scholar 

  72. Simic, M. G.: Environ. Carcino. Rev. C9, 113 (1991).

    CAS  Google Scholar 

  73. Aust, S. D., Morehouse, L. A., and Thomas, C. E. J.: Free Radical Biol. Med. 1, 3 (1985).

    CAS  Google Scholar 

  74. Wunderlich, V., Schütt, M., Böttger, M., and Graffi, A.: Biochem. J. 118, 99 (1970).

    PubMed  CAS  Google Scholar 

  75. Tzagoloff, A.: “Mitochondria”. Plenum Press, New York, 1982.

    Google Scholar 

  76. Blondin, G. A., and Green, D. E.: Proc. Natl. Acad. Sci. U.S.A. 58, 612 (1967).

    PubMed  CAS  Google Scholar 

  77. Sordahl, L. A., Blailock, Z. R., Liebelt, A. G., Kraft, G. H., and Schwartz, A.: Cancer Res. 29, 2002 (1969).

    PubMed  CAS  Google Scholar 

  78. Arcos, J. C.: J. Theoret. Biol. 30, 533 (1971).

    CAS  Google Scholar 

  79. Komai, H., Hunter, D. R., and Green, D. E.: Ann. N. Y. Acad. Sci. 227, 175 (1974).

    PubMed  CAS  Google Scholar 

  80. Capaldi, R. A., Halphen, D. G., Zhang, Y.-Z., and Yanamura, W.: J. Bioenerg. Biomembr. 30, 291 (1988).

    Google Scholar 

  81. Senior, A. E.: Physiol. Rev. 68, 177 (1988).

    PubMed  CAS  Google Scholar 

  82. Arcos, J. C., Griffith, G. W., and Cunningham, R. W.: J. Biophys. Biochem. Cytol. 7, 49 (1960).

    PubMed  CAS  Google Scholar 

  83. Yamamoto, G., Utsumi, K., and Nishikaze, K.: Acta Med. Okayama 18, 311 (1964).

    PubMed  CAS  Google Scholar 

  84. Arcos, J. C., Mathison, J. B., Tison, M. J., and Mouledoux, A. M.: Cancer Res. 29, 1288 (1969).

    PubMed  CAS  Google Scholar 

  85. Bryant, G. M., Argus, M. F., and Arcos, J. C.: Gann (Jpn. J. Cancer Res.) 68, 89 (1977).

    CAS  Google Scholar 

  86. Arcos, J. C., Tison, M. J., Gosch, H. H., and Fabian, J. A.: Cancer Res. 29, 1298 (1969).

    PubMed  CAS  Google Scholar 

  87. Vithayathil, A. J., Ternberg, J. L., and Commoner, B.: Nature 207, 1246 (1965).

    PubMed  CAS  Google Scholar 

  88. Yamada, T., Matsumoto, M., and Terayama, H.: Exp. Cell Res. 29, 153 (1963).

    PubMed  CAS  Google Scholar 

  89. Schmucker, D.: Pharmacol. Rev. 30, 445 (1979).

    Google Scholar 

  90. Campbell, T. C., and Hayes, J. R.: Pharmacol. Rev. 26, 171 (1974).

    PubMed  CAS  Google Scholar 

  91. Mahaffey, K. R., and Vanderveen, J. E.: Environ. Health Perspect. 29, 81 (1979).

    PubMed  CAS  Google Scholar 

  92. Hayes, J. R., and Campbell, T. C.: Nutrition as a Modifier of Chemical Carcinogenesis. In “Carcinogenesis”, Vol. 5: Modifiers of Chemical Carcinogenesis (T. J. Slaga, ed.). Raven Press, New York, 1980, p. 207.

    Google Scholar 

  93. Alvares, A. P., Kappas, A., Anderson, K. E., Pantuck, E. J., and Conney, A. H.: Nutritional Factors Regulating Drug Biotransformation in Man. In “Drug Action Modification-Comparative Pharmacology” (G. Olive, ed.), Vol. 8 Adv. Pharmacol. Therap. (Proc. 7th Int. Congr. Pharmacol., Paris, 1978). Pergamon, Oxford, 1979, p. 43.

    Google Scholar 

  94. Venkatesan, N., Arcos, J. C., and Argus, M. F.: Cancer Res. 30, 2563 (1970).

    PubMed  CAS  Google Scholar 

  95. Roe, F. J. C.: Br. J. Cancer 10, 72 (1956).

    PubMed  CAS  Google Scholar 

  96. Klein, M.: Cancer Res. 16, 123 (1956).

    PubMed  CAS  Google Scholar 

  97. Boutwell, R. K., Bosch, D., and Rusch, H. P.: Cancer Res. 17, 71 (1957).

    PubMed  CAS  Google Scholar 

  98. Iversen, O. H.: Virchows Arch. (Cell Pathol.) 49, 129 (1985).

    CAS  Google Scholar 

  99. Sivak, A., Goyer, M. M., and Ricci, P. F.: Nongenotoxic Carcinogens: Prologue. In “Nongenotoxic Mechanisms in Carcinogenesis” (B. E. Butterworth and T. J. Slaga, eds.), Banbury Rept. #25. Cold Spring Harbor Laboratory publ. Cold Spring Harbor, New York, 1987, p. 1.

    Google Scholar 

  100. Chouroulinkov, I.: Initiation, Promotion: Working Concept, Biological and Toxicologicol. Interpretations of Carcinogenesis. In “Theories of Carcinogenesis” (O. H. Iversen, ed.). Hemisphere, Washington, D.C., 1988, p. 191.

    Google Scholar 

  101. Clayson, D. B.: Mutation Res. 221, 53 (1989).

    PubMed  CAS  Google Scholar 

  102. Roe, F. J. C.: Mutagenesis 4, 407 (1989).

    PubMed  CAS  Google Scholar 

  103. Grasso, P., Sharratt, M., and Cohen, A. J.: Annu. Rev. Pharmacol. Toxicol. 31, 253 (1991).

    PubMed  CAS  Google Scholar 

  104. Bahnson, C. B.: Ann. N. Y. Acad. Sci. 164, 319 (1969).

    PubMed  CAS  Google Scholar 

  105. Eaton, W. W., and Kessler, L. G.: Am. J. Epidemiol. 114, 528 (1981).

    PubMed  CAS  Google Scholar 

  106. de la Pena, A. M.: “The Psychobiology of Cancer-Automatization and Boredom in Health and Disease”. Praeger, New York, 1983.

    Google Scholar 

  107. Dearfield, J. E., Shea, M., Kensett, M., Horlock, P., Wilson, R. A., and de Landsheere, C. M.: Lancet 2, 1001 (1984).

    Google Scholar 

  108. Welgan, P., Meshkinpour, H., and Bealer, M.: Gastroenterology 94, 1150 (1988).

    PubMed  CAS  Google Scholar 

  109. Marshall, W. R., and Epstein, C. H.: Addict. Behav. 5, 389 (1980).

    PubMed  CAS  Google Scholar 

  110. Pocock, S. J., Shaper, A. C., Cook, D. G., Phillips, A. N., and Walker, M.: Lancet 2, 197 (1987).

    PubMed  CAS  Google Scholar 

  111. Schweiger, U., and Pirke, K. M.: “Cyclical Ovarian Function and Eating Behavior in Restrained and Unrestrained Eaters”, 72nd Annu. Meet. Endocrine Soc., Atlanta, 1990, Abstract # 1158.

    Google Scholar 

  112. Hill, P.: Nutrition 7, 385 (1991).

    PubMed  CAS  Google Scholar 

  113. Hirohata, T.: J.Natl. Cancer Inst. 47, 895 (1968).

    Google Scholar 

  114. Strickland, R. G., and McKay, I. R.: Am. J. Dig. Dis. 18, 426 (1973).

    PubMed  CAS  Google Scholar 

  115. Demopoulos, H. B., Pietronigro, D. D., and Seligman, M. L.: The Development of Secondary Pathology with Free Radical Reactions as a Threshold Mechanism. In “Cancer and the Environment-Possible Mechanisms of Threshold for Carcinogens and Other Toxic Substances” (J. A. Cimino, H. B. Demopoulos, M. Kushner, H. Uehleke, B. L. Van Duuren, B. M. Wagner, and V. R. Young, eds.). Mary Ann Liebert, New York, 1983, p. 173.

    Google Scholar 

  116. Linn, S.: DNA Damage and Stress Responses Caused by Oxygen Radicals. In “Biological Consequences of Oxidative Stress-Implications for Cardiovascular Disease and Carcinogenesis” (L. Spatz and A. D. Bloom, eds.). Oxford Univ. Press, Oxford 1992, p. 107.

    Google Scholar 

  117. Colburn, N. H.: Gene Regulation by Oxygen Radicals and Other Stress Inducers: Role in Tumor Promotion and Progression. In “Biological Consequences of Oxidative Stress-Implications for Cardiovascular Disease and Carcinogenesis” (L. Spatz and A. D. Bloom, eds.). Oxford Univ. Press, Oxford 1992, p. 121.

    Google Scholar 

  118. Lee, M. S., Kliever, S. A., Provencal, J., Wright, P. E., and Evans, R. M.: Science 260, 1117 (1993).

    PubMed  CAS  Google Scholar 

  119. Abate, C., Rauscher F. J., III, Gentz, R., and Curran, T.: Fos and Jun Interact Through a Structural Motif Reminiscent of a Coil-Coil Structure. In “Genetic Mechanisms in Carcinogenesis and Tumor Progression” (C. C. Harris and L. A. Liotta, eds.). Wiley-Liss, New York, 1990, p. 1.

    Google Scholar 

  120. Vedeckis, W. V.: Proc. Soc. Exp. Biol. Med. 199, 1 (1992).

    PubMed  CAS  Google Scholar 

  121. Bowden, G. T., and Krieg, P.: Environ. Health. Perspect. 93, 51 (1991).

    PubMed  CAS  Google Scholar 

  122. Zile, M. H.: Proc. Soc. Exp. Biol. Med. 201, 141 (1992).

    PubMed  CAS  Google Scholar 

  123. Farias, R. N., Bloj, B., Morero, R. D., Sineris, F., and Trucco, R. E.: Biochim. Biophys. Acta 475, 231 (1975).

    Google Scholar 

  124. Meir Shimitzky, ed.: “Physiology of Membrane Fluidity”. CRC Press, Boca Raton, Florida, 1984.

    Google Scholar 

  125. Domke, I., and Weis, W.: Ann. Nutr. Metab. 28, 261 (1984).

    PubMed  CAS  Google Scholar 

  126. Gershwin, M. E., Beach, R. S., and Hurley, L. S.: “Nutrition and Immunity”. Academic Press, Orlando, Florida, 1985.

    Google Scholar 

  127. Murphy, M. G.: J. Nutr. Biochem. 1, 68 (1990).

    PubMed  CAS  Google Scholar 

  128. Stier, A.: Biochem. Pharmacol. 25, 109 (1976).

    PubMed  CAS  Google Scholar 

  129. Cullis, P. R., and Hope, M. J.: Physical Properties and Functional Roles of Lipid Membranes. In “Biochemistry of Lipids in Membranes” (D. E. Vance and J. E. Vance, eds.). Benjamin/Cummings, Menlo Park, California, 1988, p. 25.

    Google Scholar 

  130. Eriksson, L. C., and Andersson, G. N.: Crit. Rev. Biochem. Mol. Biol. 27, 1 (1992).

    PubMed  CAS  Google Scholar 

  131. Castro, C. E., Armstrong-Major, J., and Ramirez, M. E.: Federation Proc. 45, 2394 (1986).

    CAS  Google Scholar 

  132. Mullen, C. A., and Schreiber, H.: Surv. Immunol. Res. 4, 264 (1985).

    PubMed  CAS  Google Scholar 

  133. Chan, P. L., and Sinclair, N. R., St. C.: J. Natl. Cancer Inst. 48, 162 (1972).

    Google Scholar 

  134. Grohman, J., and Nowotny, A.: J. Immunol. 104, 1090 (1972).

    Google Scholar 

  135. Field, E. J., and Caspary, E. A., Br. J. Cancer 26, 164 (1972).

    PubMed  CAS  Google Scholar 

  136. Masaki, H., Takatsu, K., Hamaoka, T., and Kitagawa, M.: Gann 63, 633 (1972).

    PubMed  CAS  Google Scholar 

  137. Yamazaki, H., Nitta, K., and Umezawa, H.: Gann 64 83 (1973).

    PubMed  CAS  Google Scholar 

  138. Motoki, H., Kamo, I., Kikuchi, M., Ono, Y. and Ishida, N.: Gann 65, 269 (1974).

    PubMed  CAS  Google Scholar 

  139. Hrsak, I., and Mazotti, T.: J. Natl. Cancer Inst. 53, 1113 (1974).

    PubMed  CAS  Google Scholar 

  140. Peirce, G. E., and Devald, B. L.: Cancer Res. 35, 2729 (1975).

    Google Scholar 

  141. Namba, M., Ogura, T., Hirao, F., and Yamamura, Y.: Gann 68, 751 (1977).

    PubMed  CAS  Google Scholar 

  142. Ishida, N.: Yakugaku Zasshi 105, 91 (1985).

    PubMed  CAS  Google Scholar 

  143. Mizoguchi, H., O’Shea, J. J., Longo, D. L., Loeffler, C. M., McVicar, D. W., and Ochoa, A. C.: Science 258, 1795 (1992).

    PubMed  CAS  Google Scholar 

  144. Abrams, G. D.: Impact of the Intestinal Microflora on Intestinal Structure and Function. In: “Human Intestinal Microflora in Health and Disease” (D. J. Hentges, ed.). Academic Press, New York, 1983, p. 292.

    Google Scholar 

  145. Berg, R. D.: Host Immune Response to Antigens of the Indigenous Intestinal Flora. In “Human Intestinal Microflora in Health and Disease” (D. J. Hentges, ed.). Academic Press, New York, 1983, p. 101.

    Google Scholar 

  146. Wilkins, T. D., and Van Fassell, R. L.: Production of Intestinal Mutagens. In “Human Intestinal Microflora in Health and Disease” (D. J. Hentges, ed.). Academic Press, New York, 1983, p. 265.

    Google Scholar 

  147. Galland, J.: The Effect of Intestinal Microbes on Systemic Immunity. In “Post-Viral Fatigue Syndrome (R. Jenkins and J. Mowbray, eds.). Wiley, New York, 1991, Chap. 28, p. 405.

    Google Scholar 

  148. Hollander, D., and Tarnawski, H.: Gerontology 31, 133 (1985).

    PubMed  CAS  Google Scholar 

  149. van der Waaij, D.: The Immunoregulation of the Intestinal Flora; Consequences of Decreased Thymus Activity and Broad-Spectrum Antibiotic Treatment. In “Chemotherapy and Immunity (G. Pulverer and J. Jeljaszewicz, eds.). Gustav Fischer Verlag, Stuttgart, 1985, p. 73.

    Google Scholar 

  150. Tannock, G. W.: Effect of Dietary and Environmental Stress on the Gastrointestinal Microflora. In “Human Intestinal Microflora in Health and Disease” (D. J. Hentges, ed.). Academic Press, New York, 1983, p. 517.

    Google Scholar 

  151. Gorbach, S. L., Nahas, L., Lemer, P. I., and Weinstein, L.: Gastroenterology 53, 845 (1967).

    PubMed  CAS  Google Scholar 

  152. Blalock, J. E., and Smith, E. M.: Federation Proc. 44, 108 (1985).

    CAS  Google Scholar 

  153. Blalock, J. E., ed.: “Neuroimmunoendocrinology”. Karger, Basel, 1988.

    Google Scholar 

  154. Sanders, V. M., Fuchs, B. A., Pruett, S. B., Kerkvliet, N. I., and Kaminski, N. E.: Fundam. Appl. Toxicol. 17, 641 (1991).

    PubMed  CAS  Google Scholar 

  155. Lynn, W. S., Wallwork, J. C., and Mathews, D.: Clin. Biotechnol. 3, 39 (1991).

    Google Scholar 

  156. Rideout, W. M. III, Coetzer, G. A., Olumi, A. F., Spmck, C. H., and Jones, P. A.: 5-Methylcytosine as an Endogenous Mutagen in the p53 Tumor Suppressor Gene. In “Multistage Carcinogenesis” (C. C. Harris, S. Hirohashi, N. Ito, H. D. Pitot, T. Sugimura, M. Terada, and J. Yokota, eds.). CRC Press, Boca Raton, Florida, 1993.

    Google Scholar 

  157. Reid, T. M., Fry, M., and Loeb, L. A.: Endogenous Mutations and Cancer. In “Multistage Carcinogenesis” (C. C. Harris, S. Hirohashi, N. Ito, H. C. Pitot, T. Sugimura, M. Terada, and J. Yokota, eds.). CRC Press, Boca Raton, Florida, 1993.

    Google Scholar 

  158. Schmucker, D. L., Vessey, D. A., Wang, R. K., James, J. L., and Maloney, A.: Mec. A. Aging Dev. 27, 207 (1984).

    CAS  Google Scholar 

  159. Cutler, R. G.: Longevity Is Determined by Specific Genes: Testing the Hypothesis. In “Testing the Theories of Aging” (R. C. Adelman and G. S. Roth, eds.). CRC Press, Boca Raton, Florida, 1982, p. 25.

    Google Scholar 

  160. Benzi, G., Curti, D., Pastoris, O., Marzatico, F., Villa, R. F., and Dagani, F.: Neurochem. Res. 16, 1295 (1991).

    PubMed  CAS  Google Scholar 

  161. Ursini, F., Maiorino, M., and Sevanian, A.: Membrane Hydroperoxides. In “Oxidative Stress-Oxidants and Antioxidants” (H. Siess, ed.). Academic Press, San Diego, 1991, p. 319.

    Google Scholar 

  162. McCord, J. M., and Fridovich, I.: J. Biol. Chem. 244, 6049 (1969).

    PubMed  CAS  Google Scholar 

  163. Sahu, S. C.: Environ. Carcino. Rev. C9, 83 (1991).

    CAS  Google Scholar 

  164. Hadley, E. C.: Genetic Alteration and the Pathology of Aging. In “Testing the Theories of Aging” (R. C. Adelman and G. S. Roth, eds.). CRC Press, Boca Raton, Florida, 1982, p. 115.

    Google Scholar 

  165. Derventzi, A., and Rattan, S. I. S.: Mutat. Res. 256, 191 (1991).

    PubMed  CAS  Google Scholar 

  166. Rao, K. M. K., and Cohen, H. J.: Mutat. Res. 256, 139 (1991).

    PubMed  CAS  Google Scholar 

  167. Am. Soc. Exp. Pathol. Symp.: “Immunopathology of Aging”. Federation Proc. 33, 2017 (1974).

    Google Scholar 

  168. Burnett, M. F.: “Immunology, Aging, and Cancer”. Freeman, San Francisco, 1976.

    Google Scholar 

  169. Salomon, J.-C.: “Le Tissu Déchiré-Propos sur la Diversité des Cancers”. Seuil, Paris, 1991, Chap. 19, p. 112.

    Google Scholar 

  170. Schrödinger, E.: “What Is Life? The Physical Aspect of the Living Cell”. Cambridge Univ. Press, London, 1944.

    Google Scholar 

  171. Lima-de-Faria, A.: “Evolution Without Selection-Form and Function by Autoevolution”. Elsevier, Amsterdam, 1988, p. 121.

    Google Scholar 

  172. Gould, S. J., and Eldredge, N.: Paleobiology 3, 115 (1977).

    Google Scholar 

  173. Gould, S. J., and Eldredge, N.: Syst. Zool. 35, 143 (1986).

    Google Scholar 

  174. Argus, M. F., Leutze, C. J., and Kane, J. F.: Experientia 17, 357 (1961).

    CAS  Google Scholar 

  175. Argus, M. F., Arcos, J. C., Alam, A., and Mathison, J. H.: J. Medicinal Chem. 7, 460 (1964).

    CAS  Google Scholar 

  176. Argus, M. F., Arcos, J. C., Mathison, J. H., Alam, A., and Bemis, J. A.: Arzneimittel. Forsch (Drug Res.) 16, 740 (1966).

    CAS  Google Scholar 

  177. Bemis, J. A., Argus, M. F., and Arcos, J. C.: Biochim. Biophys. Acta 126, 274 (1966).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this chapter

Cite this chapter

Arcos, J.C., Argus, M.F. (1995). Multifactor Interaction Network of Carcinogenesis — A “Tour Guide”. In: Arcos, J.C., Argus, M.F., Woo, Yt. (eds) Chemical Induction of Cancer. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4076-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4076-1_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8640-0

  • Online ISBN: 978-1-4612-4076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics