Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 82))

Abstract

This article provides a survey of contemporary rod mechanics, including both dynamic and static theories. Much of what we discuss is regarded as classic material within the mechanics community, but the objective here is to provide a self-contained account accessible to workers interested in modelling DNA. We also describe a number of recent results and computations involving rod mechanics that have been obtained by our group at the University of Maryland. This work was largely motivated by applications to modelling DNA, but our approach reflects a background of research in continuum mechanics. In particular, we emphasize the role that Hamiltonian formulations and symmetries play in the effective computation of special solutions, conservation laws of dynamics and integrals of statics.

Research supported by AFOSR, NSF and ONR

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antman, S.S. Nonlinear Problems of Elasticity. (Springer-Verlag, New York, 1994).

    Google Scholar 

  2. Bauer, W.R., R.A. Lund & J.H. White. Twist and Writhe of a DNA Loop Containing Intrinsic Bends. Proc. Natl. Acad. Sci. USA 90 (1990) 833–837.

    Article  Google Scholar 

  3. Beliaev, A. & A. Il’ichev. Conditional Stability of Solitary Waves Propagating in Elastic Rods. Physica D 90 (1996) 107.

    Article  Google Scholar 

  4. Benham, C.J. Onset of writhing in circular elastic polymers. Phys. Rev. A 39 (1989) 2582–2586.

    Article  CAS  Google Scholar 

  5. Bottema, O. & B. Roth. Theoretical Mechanics (Dover, New York, 1979).

    Google Scholar 

  6. Caflisch, R.E. &: J.H. Maddocks. Nonlinear dynamical theory of the elastica. Proc. Roy. Soc. Edinburgh 99A (1984) 1–23.

    Google Scholar 

  7. Coleman, B.D. & J-M. Xu. On the Interaction of Solitary Waves of Flexure in Elastic Rods. Acta Mechanica 110 (1995) 173–182.

    Article  Google Scholar 

  8. Dichmann, D.J. Hamiltonian Dynamics of an Elastica and Stability of Solitary Waves. Ph. D. thesis, University of Maryland (1994).

    Google Scholar 

  9. Dichmann, D.J., J.H. Maddocks & R.L. Pego. Hamiltonian Dynamics of an Elastica. Arch. Rational Mech. Anal, forthcoming.

    Google Scholar 

  10. Dichmann, D.J., J.H. Maddocks & J-M. Xu. Three-Dimensional Hamiltonian Dynamics of an Elastica and the Stability of Solitary Waves. In preparation.

    Google Scholar 

  11. Dirac, P.A.M. On generalized Hamiltonian dynamics. Can. J. Math. 2 (1950) 129–148.

    Article  Google Scholar 

  12. Doedel, E. AUTO 86 User Manual. (Caltech, Dept. Applied Mathematics, Pasadena)

    Google Scholar 

  13. Domokos, G. A group-theoretic approach to the geometry of elastic rings. J. Nonlinear Science 5 (1995) 453.

    Article  Google Scholar 

  14. Domokos, G. & R. Paffenroth. PCR - A Visualization Tool for Multi-Point Boundary Value Problems. Technical Note BN-1167. (University of Maryland, Institute for Physical Science and Technology, College Park, 1994).

    Google Scholar 

  15. Falk, R.S. & J-M. Xu. Convergence of a Second-Order Scheme for the Nonlinear Dynamical Equations of Elastic Rods. SIAM J. Numerical Analysis 32 (1995).

    Google Scholar 

  16. Goldstein, H. Classical Mechanics, Second Edition (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  17. Ilyukhin, A.A. Spatial problems of non-linear theory of elastic rods, (Naukova Dumka, Kiev, 1979). [in Russian]

    Google Scholar 

  18. James, R.D. The equilibrium and post-buckling behaviour of an elastic curve governed by a non-convex energy. J. Elasticity 11 (1981) 239–269.

    Article  Google Scholar 

  19. Jülicher, F. Supercoiling transitions of closed DNA. Phys. Rev. E 49 (1994) 2429–2435.

    Article  Google Scholar 

  20. Kirchhoff, G.R. Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. Gesammelte Abhandlungen (Leipzig, 1882).

    Google Scholar 

  21. Klapper, I. & M. Tabor. Dynamics of Twisted Elastic Rods. Preprint.

    Google Scholar 

  22. Landau, L.D. & E.M. Lifshitz. Theory of Elasticity (Pergamon Press, New York, 1970).

    Google Scholar 

  23. Langer, J. & D. Singer. Lagrangian Aspects of the Kirchhoff Elastic Rod. SIAM Review forthcoming

    Google Scholar 

  24. LeBret, M. Catastrophic Variation of Twist and Writhing of Circular DNAs with Constraint? Biopolymers 18 (1979) 1709–1725.

    Article  CAS  Google Scholar 

  25. Li, Y. & J.H. Maddocks. On the Computation of Equilibria of Elastic Rods, Part I: Integrals, Symmetry and a Hamiltonian Formulation. Submitted to J. Comp. Physics

    Google Scholar 

  26. Li, Y. &: J.H. Maddocks. On the Computation of Equilibria of Elastic Rods, part II: Effects of Self-Contact. In preparation.

    Google Scholar 

  27. Li, Y., J.H. Maddocks & D.J. Dichmann. On the Computation of Equilibria of Elastic Rods, part III: Effects of Shear. In preparation.

    Google Scholar 

  28. Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, (Dover, New York, 1944).

    Google Scholar 

  29. Maddocks, J.H. & D.J. Dichmann. Conservation Laws in the Dynamics of Rods. J. Elasticity 34 (1994) 83–96.

    Article  Google Scholar 

  30. Olver, P.J. Applications of Lie Groups to Differential Equations, (Springer-Verlag, New York, 1986).

    Google Scholar 

  31. Shi, Y., A. Borovik & J.E. Hearst. Elastic Rod Model Incorporating Shear and Extension, Generalized Schrödinger Equations, and Novel Closed-Form Solutions for Supercoiled DNA. J. Chem. Physics 103 3166 (1995)

    Article  CAS  Google Scholar 

  32. Shi, Y. & J.E. Hearst. The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101 (1994) 5186–5200.

    Article  CAS  Google Scholar 

  33. Schlick, T. Modeling Superhelical DNA: Recent Analytical and Dynamical Approaches. Current Opinions in Structural Biology, ed. B. Honig. 5 (1995).

    Google Scholar 

  34. Schlick, T., W.K. Olson, T. Westcott & J.P. Greenberg. On Higher Buckling Transitions in Supercoiled DNA. Biopolymers 34 (1994) 565–597.

    Article  CAS  Google Scholar 

  35. Shuster, M.D. A Survey of Attitude Representations. J. Astronautical Sciences 41 (1994) 439–518.

    Google Scholar 

  36. Simo, J.C., J.E. Marsden &: P.S. Krishnaprasad. The Hamiltonian Structure of Nonlinear Elasticity: The Material and Convective Representations of Solids, Rods and Plates. Arch. Rational Mech. Anal. 104 (1988) 125–183.

    Article  Google Scholar 

  37. Simo, J.C. & L. Vu-Quoc. A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects. Comput. Meths. Appl. Mech. Engrg. 58 (1986) 79–116.

    Article  Google Scholar 

  38. Starotsin, E.L. Three-Dimensional Conformations of Looped DNA in an Elastome-chanical Approximation. Proc. 2nd International Conference on Nonlinear Mechanics. Ed. Chien Wei-zang. (Peking University Press, Peking, 1993).

    Google Scholar 

  39. Tsuru, H. Equilibrium Shapes and Vibrations of Thin Elastic Rods. J. Phys. Soc. Japan 56 (1987) 2309–2324.

    Article  Google Scholar 

  40. Wadati, M. & H. Tsuru. Elastic Model of Looped DNA. Physica D 21 (1986) 213–226.

    Article  Google Scholar 

  41. Yang, Y., I. Tobias & W.K. Olson. Finite Element Analysis of DNA Supercoiling. J. Chem. Phys. 98 (1993) 1673–1686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dichmann, D.J., Li, Y., Maddocks, J.H. (1996). Hamiltonian Formulations and Symmetries in Rod Mechanics. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4066-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4066-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94838-6

  • Online ISBN: 978-1-4612-4066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics