Skip to main content

Bioaccumulation Behavior of Persistent Organic Chemicals with Aquatic Organisms

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 102))

Abstract

Chemicals are a vital part of everyday life. They come in the form of fuels, antibiotics, pesticides, plastic containers, agricultural fertilizers, photocopying compounds, and so on. Society cannot survive in its present form without them. Growth in the numbers of chemicals used during recent decades has been extraordinary. In 1980 the total number of substances commercially available was estimated at 40,000 with about 2000 new ones being placed on the market each year (Schmidt-Bleek and Haberland 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison RF (1976) Organochlorine compounds in aquatic organisms: their distribution, transport and physiological significance. In Lockwood APM (ed) Effects of pollutants on aquatic organisms. Cambridge University Press, Cambridge, p 127.

    Google Scholar 

  • Anliker R, Clarke EA, Moser P (1981) Use of partition coefficient as an indicator of bioaccumulation tendency of dyestuffs in fish. Chemosphere 10:263–274.

    Article  CAS  Google Scholar 

  • Anliker R, Moser P (1987) The limits of bioaccumulation of organic pigments in fish: their relation to the partition coefficient and the solubility in water and octanol. Ecotoxicol Environ Safety 13:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Atkins GL (1969). Multicompartment Models for Biological Systems. Methuen, London.

    Google Scholar 

  • Bahner LH, Wilson AJ, Sheppard JM, Patrick JM, Goodman LR, Walsh GE (1977) Kepone bioconcentration, accumulation, loss and transfer through estuarine food chains. Chesapeake Sci 18:299–308.

    Article  CAS  Google Scholar 

  • Baughman GL, Paris DF (1981) Microbial bioconcentration of organic pollutants from aquatic systems—a critical review. CRC Crit Rev Microbiol January 205–227.

    Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubility, bioconcentration factors and the parachor. J. Agric Food Chem 29:1050–1059.

    Article  CAS  Google Scholar 

  • Brookes DN, Dobbs AJ, Williams N (1986) Octanol: water partition coefficients (P): measurement, estimation and interpretation, particularly for chemicals with P > 105. Ecotoxicol Environ Safety 11:251–260.

    Article  Google Scholar 

  • Bruggerman WA, Marton LBJM, Kooiman D, Hutzinger O (1981) Accumulation and elimination kinetics of di-, tri-and tetra chlorobiphenyls by goldfish after dietry exposure. Chemosphere 10:811–832.

    Article  Google Scholar 

  • Bryan GW (1979) Bioaccumulation of marine pollutants. Phil Trans Royal Soc Lond B 286:483–505.

    Article  CAS  Google Scholar 

  • Canton JH, Greve PA, Slooff W, van Esch GJ (1975) Toxicity, accumulation and elimination studies of hexachlorocyclohexane with freshwater organisms of different trophic levels. Water Res 9:1163–1169.

    Article  CAS  Google Scholar 

  • Chadwick GG, Brocksen RW (1969) Accumulation of dieldrin by fish and selected fish-food organisms. J Wildlife Manag 33:693–700.

    Article  CAS  Google Scholar 

  • Chiou CT (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ Sci Technol 19:57–62.

    Article  Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficients and bioaccumulation of selected organic chemicals. Environ Sci Technol 11:475–478.

    Article  CAS  Google Scholar 

  • Connell DW (1978) A kerosene-like taint in the sea mullet. II Some aspects of the deposition and metabolism of hydrocarbons in muscle tissue. Bull Environ Contam Toxicol 20:492–498.

    Article  PubMed  CAS  Google Scholar 

  • Connell DW, Miller GJ (1984) Chemistry and ecotoxicology of pollution. John Wiley and Son, New York, p 181.

    Google Scholar 

  • Courtney WAM, Langston WJ (1978) Uptake of polychlorinated biphenyl (Aroclor 1254) from sediment and from seawater in two intertidal polychaetes. Environ Pollut 15:303–309.

    Article  CAS  Google Scholar 

  • Davies RP, Dobbs AJ (1984) The prediction of bioconcentration in fish. Water Res 18:1253–1262.

    Article  CAS  Google Scholar 

  • Dobroski CJ, Epifanio CE (1980) Accumulation of benzo(a) pyrene in a larval bivalve via trophic transfer. Can J Fish Aquat Sci 37:2318–2322.

    Article  CAS  Google Scholar 

  • Ellegenhausen H, Guth JA, Esser HO (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotoxicol Environ Safety 4:134–157.

    Article  Google Scholar 

  • Ernst W (1977) Determination of the bioconcentration potential of marine organisms — a steady state approach. I. Bioconcentration data for seven chlorinated pesticides in mussels and their relation to solubility data. Chemosphere 11:731–740.

    Article  Google Scholar 

  • Esser HO, Moser P (1982) An appraisal of problems related to the measurement and evaluation of bioaccumulation. Ecotoxicol Environ Safety 6:13

    Article  Google Scholar 

  • Farrington JW, Goldberg ED, Risebrough JH, Martin JH, Bowen VT (1983) US Mussel Watch 1976-1978: An overview of the trace metal, DDE, PCB, hydrocarbon and radionuclide data. Environ Sci Technol 17:490–496.

    Article  CAS  Google Scholar 

  • Geyer H, Sheehan D, Kotzias D, Freitag D, Korte F (1982) Prediction of eco-toxicological behavior of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel. Chemosphere 11:1121–1134.

    Article  CAS  Google Scholar 

  • Geyer H, Scheunert T, Korte F (1985) Relationship between the lipid content offish and their bioconcentration potential of 1,2,4-trichlorobenzene. Chemosphere 14:545–555.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Opperhuizen A, Hutzinger O (1986) Bioconcentration of hydrophobic chemicals in fish: relation with membrane permeation. Environ Toxicol Chem 5:637–646.

    Article  CAS  Google Scholar 

  • Goldbach RW, van Generen H, Leeuwangh P (1976) Hexachlorobutadiene residues in aquatic fauna from surface water fed by the River Rhine. Sci Total Environ 6:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Griesbach S, Peters RH, Youakim S (1982) An allornetric model for pesticide bio-accumulation. Can J Fish Aquat Sci 39:727–735.

    Article  CAS  Google Scholar 

  • Grzenda AR, Paris DF, Taylor WJ (1970) The uptake, metabolism and elimination of chlorinated residues by goldfish fed a DDT contaminated diet. Trans Am Fish Soc 99:385–396.

    Article  CAS  Google Scholar 

  • Hamelink JL, Waybrant RC, Ball C (1971) A proposal: Exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentic environments. Trans Am Fish Soc 100:207–214.

    Article  CAS  Google Scholar 

  • Hamelink JL, Spacie A (1977) Fish and chemicals: the process of accumulation. Ann Rev Pharmacol Toxicol 17:167–177.

    Article  CAS  Google Scholar 

  • Hansch C (1969) A quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–240.

    Article  CAS  Google Scholar 

  • Harding GCH (1977) Surface area of the euphasiid Thysanoessa raschii and its relation to body length, weight, and respiration. J Fish Res Bd Can 34:225–231.

    Article  Google Scholar 

  • Harding GCH, Vass WP (1978) Uptake from seawater of DDT by marine planktonic crustacea. J Fish Res Bd Can 36:247–254.

    Article  Google Scholar 

  • Harding GC, Vass WP, Drinkwater KF (1981) Importance of feeding, direct uptake from seawater, and transfer from generation to generation in the accumulation of an organochlorine (DDT) by the marine planktonic copepod. Can J Fish Aquat Sci 38:101–119.

    Article  CAS  Google Scholar 

  • Hawker DW, Connell DW (1985a) Prediction of bioconcentration factors under non-equilibrium conditions. Chemosphere 14:1835–1843.

    Article  CAS  Google Scholar 

  • Hawker DW, Connell DW (1985b) Relationships between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bio-accumulation. Chemosphere 14:1205–1219.

    Article  CAS  Google Scholar 

  • Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Safety 11:184–197.

    Article  PubMed  CAS  Google Scholar 

  • Hilton JW, Hodson PV, Braun HE, Leatherhead JL, Slinger SJ (1983) Contaminant accumulation and physiological response in the rainbow trout reared on naturally contaminated diets. Can J Fish Aquat Sci 40:1987–1994.

    Article  CAS  Google Scholar 

  • Hunn JB, Allen JL (1974) Movement of drugs across the gills of fish. Ann Rev Pharmacol 14:47–55.

    Article  CAS  Google Scholar 

  • Hunt ED, Bischoff AI (1960) Inimical effects on wildlife of periodic DDD applications to Clear Lake. Calif Fish Game 46:91–106.

    CAS  Google Scholar 

  • Isaacs JD (1973) Potential trophic biomasses and trace substance concentrations in unstructured marine food webs. Marine Biol 23:97–104.

    Article  Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil: I. Model description. J. Environ Qual 12:558–564.

    Article  CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments and soils. Water Res 13:241–248.

    Article  CAS  Google Scholar 

  • Kenaga EE, Goring CA (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota. In: Eaton JG, Parrish PR, Hendricks AC (ed) Aquatic Toxicology, Vol. 707, ASTM, Philadelphia pp 78–115.

    Chapter  Google Scholar 

  • Kenaga EE (1972) Chlorinated hydrocarbon insecticides in the environment: factors related to bioconcentration of pesticides. In: Matsumura F, Boush GM, Misato T (eds) Environmental toxicology of pesticides. Academic Press, New York pp 193–228.

    Google Scholar 

  • Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Safety 4:26–38.

    Article  PubMed  CAS  Google Scholar 

  • Kerr SR, Vass WP (1973) Pesticide residues in aquatic invertebrates. In: Edwards CA (ed) Environmental pollution by pesticides. Plenum Press, London, pp 134–180.

    Google Scholar 

  • Kobayashi K (1981) Proceedings of the OECD Workshop on the Control of Existing Chemicals. Umweltbundesamt, Berlin, pp 141–163.

    Google Scholar 

  • Konemann H (1980) Structure activity relationships and additivity in fish toxicities of environmental pollutants. Ecotoxicol Environ Safety 4:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Lech JJ, Bend JR (1980) Relationship between biotransformation and the toxicity and fate of xenobiotic chemicals in fish. Environ Health Perspect 34:115–131.

    Article  PubMed  CAS  Google Scholar 

  • Lieb A J, Bills DD, Sinnhuber RO (1974) Accumulation of dietary polychlorinated biphenyls by rainbow trout. J Agric Food Chem 22:638–641.

    Article  PubMed  CAS  Google Scholar 

  • Lu PY, Metcalf RL (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ Health Perspect 10:269–284.

    Article  PubMed  CAS  Google Scholar 

  • Macek KJ, Rodgers CR, Stalling DL, Korn S (1970) uptake, distribution and elimination of dietary DDT and dieldrin in rainbow trout. Trans Am Fish Soc 99:689–695.

    Article  CAS  Google Scholar 

  • Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13:1218–1223.

    Article  CAS  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16: 274–276.

    Article  CAS  Google Scholar 

  • Mackay D, Patterson S (1981) Calculating fugacity. Environ Sci Technol 15:1006–1014.

    Article  CAS  Google Scholar 

  • Metcalfe RL, Sanborn JR, Lu P, Nye D (1975) Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri-. tetra-and pentachlorobiphenyl compared with DDE. Arch Environ Contam Toxicol 3:151–165.

    Article  Google Scholar 

  • Metcalfe RL, Kapoor IP, Lu PY, Schuth CS, Sherman P (1973) Model ecosystem studies of the environmental fate of six organochlorine pesticides. Environ Health Perspect 35:44.

    Google Scholar 

  • Moriarty F (1975) Exposure and residues. In Moriarty F (ed) Organochlorine insecticides: persistent organic pollutants. Academic Press, London, pp 29–72.

    Google Scholar 

  • Murphy PG (1970). Effects of salinity on uptake of DDT, DDE and DDD by fish. Bull Environ Contam Toxicol 5:404–407.

    Article  CAS  Google Scholar 

  • Murphy PG, Murphy JV (1971) Correlations between respiration and direct uptake of DDT in the Mosquito Fish. Bull Environ Contam Toxicol 6:581–588.

    Article  PubMed  CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficients to measure bio-concentration potential of organic chemicals in fish. Environ Sci Technol 8:1113–1115.

    Article  CAS  Google Scholar 

  • Neely BW (1979) Estimating rate constants for the uptake and clearance of chemicals by fish. Environ Sci Technol 12:1506–1510.

    Article  Google Scholar 

  • Norstrom RJ, McKinnon, de Freitas ASW (1976) A bioenergenics-based model for pollutant accumulation by fish. Simulation of PCB and methylmercury residue levels in Ottawa River Yellow Perch. J Fish Res Board Can 33:248–267.

    Article  CAS  Google Scholar 

  • OECD (1984) Data interpretation guides for initial hazard assessment of chemicals provisional. Organization for Economic Cooperation and Development, Paris.

    Google Scholar 

  • Ogata M, Fujisawa K, Ogino Y, Mano E (1984) Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish. Bull Environ Contam Toxicol 33:561–567.

    Article  PubMed  CAS  Google Scholar 

  • Oliver BG (1984) Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Can J Fish Aquat Sci 41:878–883.

    Article  CAS  Google Scholar 

  • Oliver BG, Niimi AJ (1983) Bioconcentration of chlorobenzenes from water by the rainbow trout: correlations with partition coefficients and environmental residues. Environ Sci Technol 17:287–291.

    Article  CAS  Google Scholar 

  • Oliver BG, Niimi AJ (1985) Bioconcentration factors of some halogenated organics for rainbow trout: limitations in their use for prediction of environmental residues. Environ Sci Technol 19:842–849.

    Article  CAS  Google Scholar 

  • Opperhuizen A, Velde EW, Gobas FAPC, Llem DAK, Steen JMD (1985) Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896.

    Article  CAS  Google Scholar 

  • Plant AL, Pownall H J, Smith LC (1983) Transfer of poly cyclic aromatic hydrocarbons between membranes: relation to carcinogenicity. Chem Biol Interact 44:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Reinert RE (1972) Accumulation of dieldrin in an alga, Daphnia magna and the guppy. J Fish Res Bd Can 29:1413–1418.

    Article  CAS  Google Scholar 

  • Roberts JR, de Freitas ASW, Gidley MAJ (1977) Influence of lipid pool size on bioaccumulation of the insecticide chlordane by northern redhorse suckers. J Fish Res Bd Can 34:89–97.

    Article  CAS  Google Scholar 

  • Robinson J, Richardson A, Crabtree AN, Coulson JC, Potts GR (1967) Organochlorine residues in marine organisms. Nature 214:1307–1311.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Bleek F, Haberland W (1980) The yardstick concept for the hazard evaluation of substances. Ecotoxicol Environ Safety 4:455–465.

    Article  PubMed  CAS  Google Scholar 

  • Shaw GR, Connell DW (1987) Comparative kinetics for bioaccumulation of poly-chlorinated biphenyls by the polchaete (Capitella capitata) and fish (Mugil cephalus). Ecotoxicol Environ Safety 13:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Shaw GR, Connell DW (1984) Physiochemical properties controlling polychlorinated biphenyl concentrations in aquatic organisms. Environ Sci Technol 18:18–23.

    Article  CAS  Google Scholar 

  • Shaw GR, Connell DW (1982) Factors influencing concentrations of polychlorinated biphenyls in organisms from an estuarine ecosystem. Aust J Mar Fresh Wat Res 33:1057–1070.

    Article  CAS  Google Scholar 

  • Sheridan PS (1975) Uptake, metabolism and distribution of DDT on organs of the Blue Crab. Chesapeake Sci 16:20–26.

    Article  CAS  Google Scholar 

  • Skaar DR, Johnson BT, Jones JR, Huckins JN (1981) Fate of kepone and mirex in a model aquatic environment sediment, fish and diet. Can J Fish Aquat Sci 81:931–938.

    Article  Google Scholar 

  • Southward GR, Beauchamp JJ, Schnieder PK (1978) Bioaccumulation potential of polycyclic aromatic hydrocarbons in Daphnia pulex. Water Res 12:973–977.

    Article  Google Scholar 

  • Spacie A, Hamilink JL (1982). Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1:309–320.

    Article  CAS  Google Scholar 

  • Spigarelli SA, Thommes MM, Prepejchal W (1983) Thermal and metabolic factors affecting PCB uptake by adult brown trout. Environ Sci Technol 17:88–94.

    Article  CAS  Google Scholar 

  • Sundstrom G, Hutzinger O (1976) The metabolism of chlorobiphenyls-a review. Chemosphere 5:267–298.

    Article  CAS  Google Scholar 

  • Thomann RV, Connolly JP (1984) Model of PCB in the Lake Michigan trout food chain. Environ Sci Technol 18:65–71.

    Article  CAS  Google Scholar 

  • Veith GD, De Foe DL, Bergstedt BV (1979) Measuring and estimating the bio-concentration factor in fish. J Fish Res Bd Can 36:1040–1048.

    Article  CAS  Google Scholar 

  • Veith GD, Macek KJ, Petrocelli SR, Carrol J (1980) An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. In Eaton JG, Parrish PR, Hendricks AC (eds) Aquat Toxicol Vol 707, ASTM, Philadelphia, pp 116–123.

    Google Scholar 

  • Walker CH (1987) Kinetic models for predicting bioaccumulation of pollutants in ecosystems. Environ Pollut 44:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Wilkes FG, Weiss CM (1971) The accumulation of DDT by the dragonfly nymph. Trans Am Fish Soc 100:222–235.

    Article  CAS  Google Scholar 

  • Woodwell GM (1967) Toxic substances and ecological cycles. Sci Am 216:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Woodwell GM, Wurster CF, Isaason PA (1967) DDT residues in an east coast estuary: a case of biological concentration of a persistent insecticide. Science 156:821–824.

    Article  PubMed  CAS  Google Scholar 

  • Zaroogian GE, Heltshe JF, Johnson M (1985) Estimation of bioconcentration in marine species using structure-activity models. Environ Toxicol Chem 4:3–12.

    Article  CAS  Google Scholar 

  • Zitko V (1980) Metabolism and distribution by aquatic animals. In Hutzinger O (ed) Handbook of environmental chemistry. Springer, Berlin, pp 221–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Connell, D.W. (1988). Bioaccumulation Behavior of Persistent Organic Chemicals with Aquatic Organisms. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3810-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3810-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8361-4

  • Online ISBN: 978-1-4612-3810-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics