Skip to main content

Sulfate Fertilization and Changes in Stable Sulfur Isotopic Compositions of Lake Sediments

  • Conference paper
Stable Isotopes in Ecological Research

Part of the book series: Ecological Studies ((ECOLSTUD,volume 68))

Abstract

Stable isotopes can record the origins and fates of anthropogenic pollutant sulfur in three ways. First, if pollutant sulfur has a distinctive isotopic composition, deposition and mixing of this sulfur will change isotopic compositions of natural waters and soils (Nriagu and Coker 1978; Krouse 1980). Unfortunately, isotopic compositions of pollutant sulfur are often similar to those present in the environment so that isotopic changes are small and accurate tracing of sulfur plumes is difficult. A second, more subtle effect involves isotopic changes that occur during metabolic adjustment to stress. For example, release of 34S-depleted hydrogen sulfide by plants can be induced by high sulfur loading (Winner et al. 1981) with the result that residual plant sulfur becomes enriched in 34S. Such stress effects may be common but are likely small and demand comparison to rigorously chosen controls. A third effect can be thought of as sulfur fertilization. Simply increasing the concentration of sulfur in the environment can lead to marked changes in isotopic compositions if processes are stimulated that result in isotopic fractionation. This review summarizes studies of sulfur storage in lake sediments, focusing on how increased sulfate deposition from the atmosphere alters natural isotopic compositions due to a sulfur fertilization effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Chambers LA and Trudinger PA (1979) Microbiological fractionation of stable sulfur isotopes. Geomicrobiol. J. 1:249–293.

    Article  CAS  Google Scholar 

  • Charles DF and Norton SA (1986) Paleolimnological evidence for trends in atmospheric deposition of acids and metals, pp. 335–431. In Acid Deposition, Long Term Trends. National Academy Press, Washington, D.C.

    Google Scholar 

  • Cook RB (1981) The biogeochemistry of sulfur in two small lakes. Ph.D. dissertation, Columbia University, New York.

    Google Scholar 

  • Cook RB and Schindler DW (1983) The biogeochemistry of sulfur in an experimentally acidified lake. In Hallberg R (editor), Environmental Biogeochemistry. Ecol Bull 35:115–127.

    Google Scholar 

  • Cuhel RL, Taylor CD, and Jannasch HW (1982) Assimilatory sulfur metabolism in marine microorganisms:considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis. Appl. Environ. Microbiol. 43:160–168.

    CAS  Google Scholar 

  • David MB and Mitchell MJ (1985) Sulfur constituents and cycling in waters, seston and sediments of an oligotrophic lake. Limnol. Oceanogr. 30:1196–1207.

    CAS  Google Scholar 

  • Deevey ES, Nakai N, and Stuiver M (1963) Fractionation of sulfur and carbon isotopes in a meromictic lake. Science 139:407–408.

    Article  PubMed  CAS  Google Scholar 

  • Dickman MD and Thode HG (1985) The rate of lake acidification in four lakes north of Lake Superior and its relationship to downcore sulphur isotope ratios. Water Air Soil Pollut. 26:233–253.

    Article  CAS  Google Scholar 

  • Fry B (1986) Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York. Biogeochemistry 2:329–343.

    Article  CAS  Google Scholar 

  • Galloway JN, Likens GE, and Hawley ME (1984) Acid precipitation:natural versus anthropogenic components. Science 226:829–831.

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN, Schofield CL, Peters NE, Hendrey GR, and Altwicker ER (1983) Effect of atmospheric sulfur on the composition of three Adirondack lakes. Can. J. Fish Aquat. Sci. 40:799–806.

    Article  CAS  Google Scholar 

  • Hartmann M and Nielsen H (1969) ?34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol. Rund. 58:621–655.

    Google Scholar 

  • Holdren GR Jr, Brunelle TM, Matisoff G, and Whalen M (1984) Timing the increase in atmospheric sulphur deposition in the Adirondack Mountains. Nature 311:245–247.

    Article  CAS  Google Scholar 

  • Ingvorsen K, Zeikus JG, and Brock TD (1981) Dynamics of bacterial sulfate reduction in a eutrophic lake. Appl. Environ. Microbiol. 42:1029–1036.

    CAS  Google Scholar 

  • Ishii MM (1953) The fractionation of sulphur isotopes in the plant metabolism of sulphates. Master’s thesis. McMaster Unversity, Hamilton, Ontario, Canada.

    Google Scholar 

  • Kaplan IR and Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34:195–212.

    PubMed  CAS  Google Scholar 

  • Kelly CA and Rudd JWM (1984) Epilimnetic sulfate reduction and its relationship to lake acidification. Biogeochemistry 1:63–77.

    Article  CAS  Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment, pp. 435–471. In Fritz P and Fontes JC (editors), Handbook of Environmental Isotope Geochemistry. Vol. 1. The Terrestrial Environment, A. Elsevier, Amsterdam.

    Google Scholar 

  • Lovley DR and Klug MJ (1986) Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 50:11–18.

    CAS  Google Scholar 

  • Mariotti S, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, and Tardieux P (1981) Experimental determination of nitrogen kinetic isotopic fractionation:some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430.

    Article  CAS  Google Scholar 

  • Matrosov AG, Chebotarev YeN, Kudryavtseva AJ, Zyukun AM, and Ivanov MV (1975) Sulfur isotope composition in freshwater lakes containing H2S. Geochem. Int. 12:217– 221.

    Google Scholar 

  • Mekhtiyeva VL, Gavrilov YY, and Pankina RG (1976) Sulfur isotopic composition in land plants. Geochem Int 13:85–88.

    Google Scholar 

  • Mekhtiyeva VL and Pankina RG (1968) Isotopic composition of sulfur in aquatic plants and dissolved sulfates. Geochem. Int. 5:624–627.

    Google Scholar 

  • Migdisov AA, Rono AB, and Grinenko VA (1983) The sulphur cycle in the lithosphere. pp. 25–128. In Ivanov MV and Freney JR (editors), The Global Biogeochemical Sulphur Cycle. John Wiley and Sons, Chichester.

    Google Scholar 

  • Nriagu JO (1968) Sulfur metabolism and sedimentary environment:Lake Mendota, Wisconsin. Limnol. Oceanogr. 13:430–439.

    Google Scholar 

  • Nriagu JO (1975) Sulphur isotopic variations in relation to sulphur pollution of Lake Erie. pp. 77–93. In Isotope Ratios as Pollutant Source and Behavior Indicators. IAEA- SM-191/28. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Nriagu JO and Coker RD (1976) Emission of sulfur from Lake Ontario sediments. Limnol. Oceanogr. 21:485–489.

    CAS  Google Scholar 

  • Nriagu JO, Coker RD (1978) Isotopic composition of sulphur in atmospheric precipitation around Sudbury, Ontario. Nature 274:883–885.

    Article  CAS  Google Scholar 

  • Nriagu JO and Coker RD (1983) Sulphur in sediments chronicles past changes in lake acidification. Nature 303:692–694.

    Article  CAS  Google Scholar 

  • Nriagu JO and Harvey HH (1978) Isotopic variation as an index of sulphur pollution in lakes around Sudbury, Ontario. Nature 273:223–224.

    Article  CAS  Google Scholar 

  • Nriagu JO and Soon YK (1985) Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochim. Cosmochim. Acta 49:823–834.

    CAS  Google Scholar 

  • Saltzman ES, Brass GW, and Price DA (1983) The mechanism of sulfate aerosol formation:chemical and sulfur isotopic evidence. Geophys. Res. Lett. 10:513–516.

    CAS  Google Scholar 

  • Schindler DW (1985) The coupling of elemental cycles by organisms:evidence from whole-lake chemical perturbations, pp. 225–250. In Stumm W (editor), Chemical Processes in Lakes. John Wiley and Sons, New York.

    Google Scholar 

  • Smith RL and Klug MJ (1981) Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl. Environ. Microbiol. 41:1230–1237.

    CAS  Google Scholar 

  • Wetzel R (1975) Limnology, Saunders, Philadelphia.

    Google Scholar 

  • Winner WE, Smith CL, Koch GW, Mooney HA, Bewley JD, and Krouse HR (1981) Rates of emission of H2S from plants and patterns of stable sulphur isotope fractionation. Nature 289:672–673.

    Article  CAS  Google Scholar 

  • Wright RF (1983) Predicting acidification of North American lakes. Norwegian Institute for Water Research 4/1983, Oslo, Norway. Report 0-81036, serial #1477.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Fry, B. (1989). Sulfate Fertilization and Changes in Stable Sulfur Isotopic Compositions of Lake Sediments. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (eds) Stable Isotopes in Ecological Research. Ecological Studies, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3498-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3498-2_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8127-6

  • Online ISBN: 978-1-4612-3498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics