Skip to main content

Water Content and Solute Diffusion Properties in Articular Cartilage

  • Conference paper
Biomechanics of Diarthrodial Joints

Abstract

All living tissues depend on solute transport for proper physiological function. Articular cartilage is no exception. Articular cartilage is, however, unique compared to most other biological tissues in that it lacks a vascular supply. All solute transport into and out of mature tissue must occur across the articular surface (in immature tissue vascular communication occurs at the subchondral junction)(Ogata et al., 1978). Nutrients enter across the articular surface and move through the tissue’s interstitial fluid space to nourish the chondrocytes. Deprive the cells of this mechanism and they will quickly die. Solute transport is not only important for nutrition but also essential for proper physicochemical balance and biomechanical function. Metabolic waste products are removed from the tissue by excretion across the articular surface. Other cellular products, such as those necessary for collagen and proteoglycan construction, must also move freely throughout the tissue matrix to repair and replenish the tissue’s structural matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aifantis EC: A new interpretation of diffusion in high-diffusivity paths. A continuum approach. Acta Metallurgica 1979;27:683–691.

    Google Scholar 

  • Allhands RV, Torzilli PA, Kallfelz F: Measurement of diffusion of uncharged molecules in articular cartilage. Cornell Veterinarian 1984;74:111–123.

    Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM 1960;24:1286–1303.

    MATH  Google Scholar 

  • Berens AR, Hopfenberg HB: Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978;19:489–496.

    Article  Google Scholar 

  • Bernich E, Rubenstein R, Bellin JS: Membrane transport properties of bovine articular cartilage. Biochem Biophys Acta 1976;448:551–561.

    Article  Google Scholar 

  • Bretsznajder S: Prediction of Transport and Other Physical Properties of Fluids. New York, Pergamon Press, 1971.

    Google Scholar 

  • Brocklehurst R, Bayliss MT, Maroudas A, Coysh HL, Freeman MAR, Revell PA, Ali SY: The composition of normal and osteoarthritic articular cartilage from human knee joints. J. Bone and Joint Surgery 1984;66A:95–106.

    Google Scholar 

  • Comper WD, Williams RPW: Hydrodynamics of concentrated proteoglycan solutions. The Journal of Biological Chemistry 1987;262:13464–13471.

    Google Scholar 

  • Crank J: The Mathematics of Diffusion. Oxford, Clarendon Press, 1975.

    Google Scholar 

  • Crank J, Park GS: Diffusion in Polymers. New York, Academic Press, 1968.

    Google Scholar 

  • Dunstone JR: Ion-exchange reactions between cartilage and various cations. Biochem J 1966;77:164–170.

    Google Scholar 

  • Grodzinsky AJ, Roth V, Myers E, Grossman WD, Mow VC: The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension. J Biomech 1981;103:221–231.

    Article  Google Scholar 

  • Grynpas MD, Eyre DR, Kirschner DA: Collagen type II differs from type I in native molecular packing. Biochem Biophys Acta 1980;626:346–355.

    Google Scholar 

  • Handler-Bernich E, Lotke P, Rubenstein R: Membrane characteristics of human articular cartilage. Biochemica Biophysica Acta 1972;266:732–736.

    Article  Google Scholar 

  • Harris K, Woolf LA: Pressure and temperature dependence of the self diffusion coefficient of water and oxygen–18 water. J.C.S. Faraday I 1980;76:377–385.

    Article  Google Scholar 

  • Harper GS, Comper WD, Preston BN, Daivis P: Concentration dependence of proteoglycan diffusion. Biopolymers 1985;24:2165–2173.

    Article  Google Scholar 

  • Idol WK, Anderson JL: Effects of adsorbed polyelectrolytes on convective flow and diffusion in porous membranes. J Mem Biol 1986;28:269–286.

    Google Scholar 

  • Laurent TC: The interaction between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions. J Biochem 1964;93:106–111.

    Google Scholar 

  • Lemperg R, Larsson S-E: The glycosaminoglycans of bovine articular cartilage. I. Concentration and distribution in different layers in relation to age. Calc Tiss Res 1974; 15: 237–251.

    Google Scholar 

  • Lemperg RK, Larsson SE, Hjertquist SO: Distribution of water and glycosaminoglycans in different layers of cattle articular cartilage. Biochem Biophys Aspects 1971;7:419–421.

    Google Scholar 

  • Lipshitz H, Etheredge R, Glimcher MJ: Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J Bone Jt Surg 1976; 58A:1149–1153.

    Google Scholar 

  • Lotke PA, Granda JL: Changes in the permeability of human articular cartilage in early degenerative osteoarthritis. Surgical Forum 1971;22:449–450.

    Google Scholar 

  • Lotke PA, Granda JL: Alterations in the permeability of articular cartilage by proteolytic enzymes. Arth Rheum 1972; 15:302–308.

    Article  Google Scholar 

  • Maroudas A: Distribution and diffusion of solutes in articular cartilage. Biophysical Journal 1970;10:365–379.

    Article  Google Scholar 

  • Maroudas A: Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 1975;12:233–248.

    Google Scholar 

  • Maroudas A: Transport of solutes through cartilage: permeability to large molecules. J Anat 1976;122:335–347.

    Google Scholar 

  • Maroudas A: Physical Chemistry of Articular Cartilage and the Intervertebral Disc., in L Sokoloff (ed.): The Joints and Synovial Fluid. New York, Academic Press, 1980, pp. 240–293.

    Google Scholar 

  • Maroudas A, Bannon C: Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 1981;18:619–632.

    Google Scholar 

  • Maroudas A, Bullough P: Permeability of articular cartilage. Nature 1968;219:1260–1261.

    Google Scholar 

  • Maroudas A, Evans H: Sulfate diffusion and incorporation into human articular cartilage. Biochem Biophys Acta 1974;338:265–279.

    Google Scholar 

  • Maroudas A, Schneiderman R: “Free” and “exchangeable” or “trapped” and “non-exchangeable” water in cartilage. J Orthop Res 1987;5:133–138.

    Article  Google Scholar 

  • Maroudas A, Venn M: Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. II. Swelling. Ann. Rheum. Dis. 1977;36:399–406.

    Article  Google Scholar 

  • Mathews MB, Decker L: Comparative studies of water sorption of hyaline cartilage. Biochem Biophys Acta 1977;497:151–159.

    Google Scholar 

  • McDevitt CA, Muir H: Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Jt Surg 1976;58:94–101.

    Google Scholar 

  • Miller DR, Peppas NA: Diffusional effects during albumin adsorption on highly swollen poly (vinyl alcohol) hydrogels. European Polymer Journal 1988;24:611–615

    Article  Google Scholar 

  • Mow VC, Myers ER, Roth V, Lalik P: Implications for collagen-proteoglycan interactions from cartilage stess relaxation behavior in isometric tension. Seminars in Arthritis Rheum. 1981;ll(l):41–43.

    Article  Google Scholar 

  • Myers ER, Lai WM, Mow VC: A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J Biomech 1984;106:151–158.

    Article  Google Scholar 

  • Neogi P, Kim M, Yang Y: Diffusion in solids under strain, with emphasis on polymer membranes. American Institutes of Chemical Engineers Journal (AIChE J) 1986;32:1146–1157.

    Google Scholar 

  • Norton J, Urban J, Maroudas A, Parker KH, Winlove CP: A failure to observe enhanced diffiisivity of glucose in a matrix of hyaluronic acid. The Journal of Biological Chemistry 1982;257:14134–14135.

    Google Scholar 

  • Ogata K, Whiteside LA, Lesker PA: Subchondral route for nitrition to articular cartilage in the rabbit. J Bone Jt Surg 1978;60A:905–910.

    Google Scholar 

  • Ogston AG, Sherman TF: Effects of hyaluronic acid upon diffusion of solutes and flow of solvent J Physiol 1961;156: 67–74.

    Google Scholar 

  • Osada Y, Honda K, Ohta M: Control of water permeability by mechanochemical contraction of poly(methacrylie acid)- grafted membranes. J Mem Biol 1986;27:327–338.

    Google Scholar 

  • Paul DR: Transport properties of polymers. Applied Polymer Science., American Chemical Society, 1985, pp. 253–275.

    Google Scholar 

  • Phillies GDJ: Universal scaling equation for self-diffusion by macromolecules in solution. Macromolecules 1986;19:2367–2376.

    Article  Google Scholar 

  • Preston BN, Snowden JM: Model connective tissue systems: The effect of proteoglycans on the diffusional behavior of small non-electrolytes and microions. Biopolymers 1972;11:1627–1643.

    Article  Google Scholar 

  • Preston BN, Snowden JM, Houghton KT: Model connective tissue systems: The effect of proteoglycans on the distribution of small non-electrolytes and micro-ions. Biopolymers 1972;11: 1645–1659.

    Article  Google Scholar 

  • Preston BN, Snowden JMcK: Diffusion properties of model extracellular systems, in E Kulonen J Pikkarainen (eds.): Biology of Fibroblast. New York, Academic, 1973, pp. 215–230.

    Google Scholar 

  • Snowden JM, Maroudas A: The distribution of serum albumin in human normal and degenerate articular cartilage. Biochem Biophys Acta 1976;428:726–740.

    Google Scholar 

  • Tasaka M, Suzuki S, Ogawa Y, Kamaya M: Freezing and nonfreezing water in charged membranes. J Mem Biol 1988;38: 175–183.

    Google Scholar 

  • Tivant P, Turq P, Drifford M, Magdelenat H, Menez R: Effect of ionic strength on the diffusion coefficient of chondroitin sulfate and heparin measured by quasielastic light scattering. Biopolymers 1983;22:643–662.

    Article  Google Scholar 

  • Torzilli PA: The influence of cartilage conformation on its equilibrium water partition. J Orthop Res 1985;3:473–483.

    Article  Google Scholar 

  • Torzilli PA: Water content and equilibrium water partition in immature cartilage. J Orthop Res 1988;6:766–769.

    Article  Google Scholar 

  • Torzilli PA, Adams TC, Mis RJ: Transient solute diffusion in articular cartilage. J Biomech 1987;20:203–214.

    Article  Google Scholar 

  • Torzilli PA, Rose DE, Dethmers DA: Equilibrium water partition in articular cartilage. Biorheology 1982;19:519–537.

    Google Scholar 

  • Urban J, Holm S, Maroudas A, Nachemson A: Nutrition of the intervertebral disc. Effect of fluid flow and solute transport. Clin. Orth. Rel. Res. 1982;170:296–302.

    Google Scholar 

  • Urban JPG, Holm S, Maroudas A: Diffusion of small solutes into the intervertebral disc: an in vivo study. Biorheology 1978;15:203–223.

    Google Scholar 

  • Venn M, Maroudas A: Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 1977;36:121–129.

    Article  Google Scholar 

  • Venn MF: Variation of chemical composition with age in human femoral head cartilage. Ann. Rheum. Dis. 1978;37:168–174.

    Article  Google Scholar 

  • Viswanadham RK, Kramer EJ: Elastic properties of reconstituted collagen hollow fibre menbranes. J Mat Sci 1976;11:1254–1262.

    Article  Google Scholar 

  • Wan W, Whittenburg SL: Concentration dependence of the polymer diffusion coefficient. Reversible Polymeric Gels and Related Systems, American Chemical Society 1987 pp. 4.46–4.56.

    Google Scholar 

  • Wik KO, Comper WD: Hyaluronate diffusion in semidilute solutions. Biopolymers 1982;21:583–599.

    Article  Google Scholar 

  • Wurster NB, Lust G: Fibronectin and water content of articular cartilage explants after partial depletion of proteoglycans. J Orthop Res 1986;4:437–445.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Torzilli, P.A., Askari, E., Jenkins, J.T. (1990). Water Content and Solute Diffusion Properties in Articular Cartilage. In: Ratcliffe, A., Woo, S.LY., Mow, V.C. (eds) Biomechanics of Diarthrodial Joints. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3448-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3448-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8015-6

  • Online ISBN: 978-1-4612-3448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics