Skip to main content

Variance and the Description of Nature

  • Chapter
Comparative Analyses of Ecosystems

Abstract

I examine here the epistemological and operational consequences of the use of ecological variability in comparative analyses. Ecological variability is used in comparative analyses to describe the possible states of ecological properties and to search for patterns in nature. Success in these goals requires (1) an explicit recognition of the structure and development of ecological variability and (2) appreciation of the important epistemological constraints inherent to the different methods used in the study of ecological variance. Ecological variance is often hierarchical in nature, containing a nested array of scales of variation, each scale contributing peculiar components to the global variability and presenting patterns that may differ across scales. The approach used to examine ecological variability needs, therefore, to be able to cope with the different types of patterns possible (e.g., continuous relationships, boundary conditions, threshold relationships, etc.) and to allow for changes in the existing patterns when sampling across scales. Thus, I contend that increased flexibility in the search for patterns in ecological variability is essential for successful comparative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.S., S. Guilizzoni, and S. Adams. (1978). Relationship of dissolved inorganic carbon to macrophyte photosynthesis in some Italian lakes. Limnol. Oceanogr. 23:912–913.

    Article  CAS  Google Scholar 

  • Allen, P.M. (1985). Ecology, thermodynamics, and self-organization: towards a new understanding of complexity. In: Ecosystem Theory for Biological Oceanography, R.E. Ulanowicz and T. Platt, eds. Can. Bull Fish. Aquat. Sci. 213:3–26.

    Google Scholar 

  • Allen, T.F.H. and T.W. Hoekstra. (1986). Instability in overconnected and under-connected systems: a matter of relative lag at different hierarchical levels. In: Proceedings of the International Conference on Mental Images, Values, and Reality, Vol. I, J.A. Dillon Jr., ed. Society for General Systems Research, Salinas, California, pp. D77–D85.

    Google Scholar 

  • Allen, T.F.H. and T.B. Starr. (1982). Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.

    Google Scholar 

  • Anderson, G.C. (1969). Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr. 14:386–391.

    Article  CAS  Google Scholar 

  • Anderson, R.M. and J. Kalff. (1986). Regulation of submerged aquatic plant distribution in an uniform area of a weed bed. J. Ecol. 74:953–961.

    Article  Google Scholar 

  • Barnes, H. (1967). Ecology and experimental biology. Helgol. Wiss. Meeresunters. 15:6–26.

    Article  Google Scholar 

  • Breiman, L., J.H. Friedman, R.A. Olsen, and C.J. Stone. (1984). Classification and Regression Trees. Wadsworth, Belmont, California.

    Google Scholar 

  • Brinkhurst, R.O. (1974). The Benthos of Lakes. MacMillan Press, London.

    Google Scholar 

  • Canfield, D.E., Jr. (1981). Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Water Resour. Bull. 19:255–262.

    Google Scholar 

  • Canfield, D.E., Jr. and C.M. Duarte. (1988). Patterns in the biomass and cover of aquatic macrophytes in lakes: a test in Florida lakes. Can. J. Fish. Aquat. Sci. 45:1976–1982.

    Article  Google Scholar 

  • Chambers, P.A. and J. Kalff. (1985). Depth distribution and biomass of submerged macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42:701–709.

    Article  Google Scholar 

  • Cruzado, A. and K.C. Kelley. (1973). Continuous measurements of nutrient concentrations and phytoplankton density in the surface waters of the Western Mediterranean, winter 1970. Thalassia Jugosl. 9:19–24.

    CAS  Google Scholar 

  • Denman, K.L., A. Okubo, and T. Platt. (1977). The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr. 22:1033–1038.

    Article  CAS  Google Scholar 

  • Dillon, P.J. and F.H. Rigler. (1974). The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19:767–773.

    Article  CAS  Google Scholar 

  • Duarte, C.M. (1987). Biomass and distribution of submerged macrophytes in lakes. Ph.D. Dissertation, McGill University, Montreal, Canada.

    Google Scholar 

  • Duarte, C.M. (1990). Time lags in algal growth: generality, causes, and consequences. J. Plankton Res. 12:873–883.

    Article  Google Scholar 

  • Duarte, C.M. and J. Kalff. (1986). Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 31:1072–1080.

    Article  Google Scholar 

  • Duarte, C.M. and J. Kalff. (1988). The influence of lake morphometry on the response of submerged macrophytes to nutrient additions. Can. J. Fish. Aquat. Sci. 45:216–221.

    Article  Google Scholar 

  • Duarte, C.M. and J. Kalff. (1989). The influence of catchment geology and lake depth on phytoplankton biomass. Arch. Hydrobiol. 115:27–40.

    Google Scholar 

  • Duarte, C.M. and J. Kalff. (1990). Patterns in the submerged macrophyte biomass of lakes and the importance of the scale of analysis in the interpretation. Can. J. Fish. Aquat. Sci. 47:357–363.

    Article  Google Scholar 

  • Duarte, C.M. and K. Sand-Jensen. (1990a). Seagrass colonization: patch formation and patch growth in Cymodocea nodosa. Mar. Ecol. Prog. Ser. 65:193–200.

    Article  Google Scholar 

  • Duarte, C.M. and K. Sand-Jensen. (1990b). Seagrass colonization: biomass development and shoot demography in Cymodocea nodosa patches. Mar. Ecol. Prog. Ser. 67:97–103.

    Article  Google Scholar 

  • Duarte, C.M., S. Agusti, and R.H. Peters. (1987). An upper limit to the abundance of aquatic organisms. Oecologia (Berlin) 74:272–276.

    Google Scholar 

  • Duarte, C.M., J. Kalff, and R.H. Peters. (1986). Patterns in the biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. Aquat. Sci. 43:1900–1908.

    Article  Google Scholar 

  • Estrada, M., M. Alcaraz, and C. Marrasé. (1987). Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms. Mar. Ecol. Prog. Ser. 38:267–281.

    Article  Google Scholar 

  • Fee, E.J. (1976). The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: implications for primary production. Limnol. Oceanogr. 21:767–783.

    Article  Google Scholar 

  • Haidane, J.B.S. (1955). The measurement of variation. Evolution 9:484.

    Article  Google Scholar 

  • Hara, T. (1988). Dynamics of size structure in plant populations. Trends Ecol. Evol. 3:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Huribert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54:187–211.

    Article  Google Scholar 

  • Lakatos, I. (1968). Criticism and the methodology of scientific research programmes. Proceedings Aristotelian Soc. 69:159–186.

    Google Scholar 

  • Lewontin, R.C. (1966). On the measurement of relative variability. Syst. Zool. 15: 141–142.

    Article  Google Scholar 

  • Margalef, R. (1978). Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509.

    Google Scholar 

  • Margalef, R. (1982). La Biosfera, entre la Termodinámica y el Juego. Omega, Madrid.

    Google Scholar 

  • Maso, M. and C.M. Duarte. (1989). The spatial and temporal structure of hydrographic and phytoplankton biomass heterogeneity along the Catalan Coast (NW Mediterranean). J. Mar. Res. 47:813–827.

    Article  CAS  Google Scholar 

  • McCauley, E. and J. Kalff. (1981). Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38:458–463.

    Article  Google Scholar 

  • Mentis, M.T. (1988). Hypothetico-deductive and inductive approaches in ecology. Funct. Ecol. 2:5–14.

    Article  Google Scholar 

  • Montgomery, D.C. and E.A. Peck. (1982). Introduction to Linear Regression Analysis. Wiley, New York.

    Google Scholar 

  • O’Neill, R. V. (1988). Hierarchical theory and global change. In: Scales and Global Change, T. Rosswall, R.G. Woodmansee, and P.G. Risser, eds. Wiley, New York.

    Google Scholar 

  • Peters, R.H. (1983). The Ecological Implications of Body Size. Cambridge University Press, New York.

    Google Scholar 

  • Peters, R.H. (1986). The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.

    Article  CAS  Google Scholar 

  • Peters, R.H. (1987). Los objetivos de la investigation y la naturaleza de la ciencia. Alquibla 10–11:23–29.

    Google Scholar 

  • Popper, K.R. (1959). The Logic of Scientific Discovery. Hutchinson, London.

    Google Scholar 

  • Prairie, Y.-T., C.M. Duarte, and J. Kalff. (1989). Unifying nutrient-chlorophyll relationships in lakes. Can. J. Fish. Aquat. Sci. 46:1176–1182.

    Article  CAS  Google Scholar 

  • Rasmussen, J.B. (1988). Habitat requirements of burrowing mayflies (Ephemeridae-Hexagenia) in lakes, with special reference to the effects of eutrophication. J. North Am. Benthol. Soc. 7:51–64.

    Article  Google Scholar 

  • Rigler, F.H. (1982). Recognition of the possible: an advantage of empiricism in ecology. Can. J. Fish. Aquat. Sci. 39:1323–1331.

    Article  Google Scholar 

  • Rørslett, B. (1987). A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29:63–81.

    Article  Google Scholar 

  • Rose, G.A. and W.C. Leggett. (1990). The importance of scale to predator-prey spatial correlations: An example of Atlantic fishes. Ecology 71:33–43.

    Article  Google Scholar 

  • Seip, K.L. and H. Ibrekk. (1988). Regression equations for lake management —how far do they go?. Verh. Int. Verein. Limnol. 23:778–785.

    Google Scholar 

  • Sokal, R.R. and F.J. Rohlf. (1969). Biometry. Freeman, San Francisco.

    Google Scholar 

  • Thomas, W.H. (1979). Anomalous nutrient-chlorophyll interrelationships in the offshore eastern tropical Pacific Ocean. J. Mar. Res. 37:327–335.

    CAS  Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. London B 237:37–72.

    Article  Google Scholar 

  • Vaqué, D, C Marrasé, V. Iñiguez, and M. Alcaraz. (1989). Zooplankton influence on the phytoplankton bacterioplankton coupling. J. Plankton Res. 11:625–632.

    Article  Google Scholar 

  • Vollenweider, R.A. (1987). Scientific concepts and methodologies pertinent to lake research and lake restoration. Schweiz. Z. Hydrol. 49:129–147.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Duarte, C.M. (1991). Variance and the Description of Nature. In: Cole, J., Lovett, G., Findlay, S. (eds) Comparative Analyses of Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3122-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3122-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7804-7

  • Online ISBN: 978-1-4612-3122-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics