Skip to main content

Epicardial Deformation From Coronary Cinéangiograms

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

A quantitative method is developed for estimating epicardial deformation in the intact heart using the motions of the coronary arteries. The method makes full use of a deformable structural model of the time-varying epicardial surface to guide the analysis of coronary cinéangiograms. A finite element model was adopted, consisting of nodal geometric parameters interpolated by bicubic Hermite basis functions in the spatial domain and sinusoidal (Fourier) basis functions in the temporal domain. The parameters of an initial static surface were fitted to the three-dimensional (3-D) locations of the coronary arteries at diastasis. The parameters of the time-varying displacement field were then fitted to the tracked displacements of the bifurcation points of the coronary arteries. The locations of the vessel centerlines were then tracked from frame to frame throughout the cycle, using the fit to the bifurcations as a reference state. Owing to the nonuniform distribution of the superficial arteries over the epicardium, weighted spline smoothness constraints were added to the error function in order to regularize the least-squares solution. The time-varying surface model provides a complete description of epicardial deformation over the entire region spanned by the ensemble basis functions. The Green’s strain tensor, referred to in-plane material coordinates, was used to calculate principal (major and minor) surface strains at any point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.K. Aggarwal and N. Nandhakumar. On the computation of motion from sequences of images—A review. Proceedings of the IEEE, 76: 8: 917–935, 1988.

    Article  Google Scholar 

  2. T. Arts, P.C. Veenstra, and R.S. Reneman. Epicardial deformation and left ventricle wall mechanics during ejection in the dog. Am. J. Physiol., 243: H379-H390, 1982.

    Google Scholar 

  3. R. Bajcsy and S. Kovacic. Multiresolution elastic matching. Comput. Vision Graph. Image Process., 46: 1–21, 1989.

    Article  Google Scholar 

  4. M. Bertero, T.A. Poggio, and V. Torre. III-posed problems in early vision. Proceedings of the IEEE, 76: 8: 69–88, 1988.

    Article  Google Scholar 

  5. R. Beyar and S. Sideman. Effect of the twisting motion on the nonuniformities of transmural fibre mechanics and energy demands—A theoretical study. IEEE Trans. Biomed. Eng., 32: 764–769, 1983.

    Article  Google Scholar 

  6. D.P. Boyd and M.J. Lipton. Cardiac computed tomography. Proceedings of the IEEE, 71: 298–307, 1983.

    Article  Google Scholar 

  7. L. Brevdo, S. Sideman, and R. Beyar. A simple approach to the problem of three dimensional reconstruction. Comput. Vision Graph. Image Process., 37: 420–427, 1987.

    Article  Google Scholar 

  8. R.W. Brower, H.T. ten Katen, and G.J. Meester. Direct method for determining regional myocardial shortening after bypass surgery from radiopaque markers in man. Am. J. Cardiol., 41: 1222–1229, 1978.

    Article  Google Scholar 

  9. H. Bunke, G. Sagerer, and H. Niemann. Model based analysis of scintigraphic image sequences of the human heart. In T.S. Huang, editor, Image Sequence Processing and Dynamic Scene Analysis, pages 725–740. Springer-Verlag, New York, 1983.

    Google Scholar 

  10. B.R. Chaitman, H. Demots, J.D. Bristow, J. Rosch, and S.H. Rahimtoola. Objective and subjective analysis of left ventricular angiograms. Circulation, 52: 420–425, 1975.

    Google Scholar 

  11. P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik, 31: 377–403, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Fukui, M. Yachida, and S. Tsuji. Detection and tracking of bloodvessels in cine-angiograms. Proceedings of the IEEE, 1: 383–385, 1980.

    Google Scholar 

  13. J.J. Gerbrands, F. Booman, and J.H.C. Reiber. Comuter analysis of moving radiopaque markers from x-ray cinefilms. Comput. Vision Graph. Image Process., 11: 35–48, 1979.

    Article  Google Scholar 

  14. B. Hannaford and S.A. Glantz. Adaptive linear predictor tracks implanted radiopaque markers. IEEE Trans. Biomed. Eng., 32: 117–125, 1985.

    Article  Google Scholar 

  15. D.C. Harrison, A. Goldblatt, E. Braunwald, G. Glick, and D.T. Mason. Studies on cardiac dimensions in intact unanesthetized man. 1. Description of techniques and their validation. Circ. Res., 13: 448–455, 1963.

    Google Scholar 

  16. M. Hashimoto and J. Sklansky. Multiple-order derivatives for detecting local image characteristics. Comput. Vision Graph. Image Process., 39: 28–55, 1987.

    Article  Google Scholar 

  17. G.T. Herman, L. Axel, R. Bajcsy, et al., editors. Model Driven Visualization of Coronary Arteries., Proceedings of the 8th International Joint Conference on Artificial Intelligence, 1983, 1128–1131.

    Google Scholar 

  18. E.C. Hildreth. Computations underlying the measurement of visual motion. Artif. Intell., 23: 309–354, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.J. Hunter and B.H. Smaill. The analysis of the heart: A continuum approach. Prog. Biophys. Molec. Biol., 52: 101–164, 1988.

    Article  Google Scholar 

  20. N.B. Ingels, G.T. Daughters, E.D. Stinson, and E.L. Alderman. Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation, 61: 966–972, 1980.

    Google Scholar 

  21. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Int. J. Comput. Vision, 1: 4: 321–331, 1988.

    Article  Google Scholar 

  22. H.C. Kim, B.G. Min, M.M. Lee, J.D. Seo, Y.W. Lee, and M.C. Han. Estimation of local cardiac wall deformation and regional wall stress from biplane coronary cineangiograms. IEEE Trans. Biomed. Eng., 32: 503–511, 1985.

    Article  Google Scholar 

  23. M. Kindelan and J. Suarez de Lezo. Artery detection and tracking in coronary angiography. In S. Levialdi, editor, Digital Image Analysis, pages 283–294, Pitman, New York, 1984.

    Google Scholar 

  24. Y. Kong, J.J. Morris, and H.D. Mcintosh. Assessment of regional myocardial performance from biplane coronary angiograms. Am. J. Cardiol, 27: 529–537, 1971.

    Article  Google Scholar 

  25. R.F. Leighton, S.M. Witt, and R.P. Lewis. Detection of hypokinesis by a quantitative analysis of left ventricle cineangiograms. Circulation, 50: 121–127, 1974.

    Google Scholar 

  26. M.M. LeWinter, R.S. Kent, J.M. Kroener, T.E. Carew, and J.W. Covell. Regional differences in myocardial performance in the left ventricle of the dog. Circ. Res., 37: 191–199, 1975.

    Google Scholar 

  27. K.J. Liu, J.M. Rubin, M.J. Potel, et al. Left ventricular wall motion: Its dynamic transmural characteristics. J. Surg. Res., 36: 25–34, 1984.

    Article  Google Scholar 

  28. S.A. MacKay, M.J. Potel, and J.M. Rubin. Graphics methods for tracking three-dimensional heart wall motion. Comput. Biomed. Res., 15: 455–473, 1982.

    Article  Google Scholar 

  29. A.D. McCulloch, B.H. Smaill, and P.J. Hunter. Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Phys., 252: H233–241, 1987.

    Google Scholar 

  30. A.D. McCulloch, B.H. Smaill, and P.J. Hunter. Regional left vectricular epicardial deformation in the passive dog heart. Circ. Res., 64: 721–733, 1989.

    Google Scholar 

  31. I.G. McDonald. Contraction of the hypertrophied left ventricle in man studied by cineradiography of epicardial markers. Am. J. Cardiol., 30: 587–594, 1972.

    Article  Google Scholar 

  32. M. McQueen. Evaluation of a generalized template matching procedure. Australasian Phys. Eng. Sci. Med., 9: 4: 180–187, 1986.

    Google Scholar 

  33. G.D. Meier, M.C. Ziskin, W.P. Santamore, and A.A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng., 27: 319–329, 1980.

    Article  Google Scholar 

  34. Herman M.V., R.A. Heinle, and M.D. Klein. Localized disorders in myocardial contraction: Asynergy and its role in congestive heart failure. N. Engl. J. Med., 277: 222–232, 1967.

    Article  Google Scholar 

  35. P.M.F. Nielsen. The Anatomy of the Heart: A Finite Element Model. Ph.D. thesis, University of Auckland, New Zealand, 1987.

    Google Scholar 

  36. P.M.F. Nielsen, I.J. Le Grice, B.H. Smaill, and P.J. Hunter. A mathematical model of the geometry and fibrous structure of the heart. Am. J. Phys., 1991. (in press).

    Google Scholar 

  37. C.M. Philips, J. Prenis, W.P. Santamore, and A.A. Bove. Recognition and storage of metal heart marker position from biplane X-ray images at video rates. IEEE Trans. Biomed. Eng., 30: 10–17, 1983.

    Article  Google Scholar 

  38. D.L. Pope, D.L Parker, D.E. Gustafson, and P.D. Clayton. Dynamic search algorithms in left ventricular border detection and analysis of coronary arteries. Comput. Cardiol., September: 71–75, 1984.

    Google Scholar 

  39. M.J. Potel, J.M. Rubin, S.A. MacKay, A.M. Aisen, J. Al-Sadir, and R.E. Sayre. Methods for evaluating cardiac wall motion in three dimensions using bifurcation points of the coronary arterial tree. Invest. Radiol., 18: 47–57, 1983.

    Article  Google Scholar 

  40. J.S. Rankin, P.A. McHale, C.E. Artentzen, D. Ling, J.C. Greenfield, and R.W. Anderson. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ. Res., 39: 304–313, 1976.

    Google Scholar 

  41. B. Shahraray and D.J. Anderson. Optimal estimation of contour properties by cross-validated regularization. IEEE Trans. Patt. Anal. Mach. Intell., 11: 600–610, 1989.

    Article  Google Scholar 

  42. T.H. Shepertycki and B.C. Morton. A computer graphic-based angiographic model for normal left ventricular contraction in man and its application to the detection of abnormalities in regional wall motion. Circulation, 68: 1222–1230, 1983.

    Article  Google Scholar 

  43. R.W. Smalling, M.H. Skolnick, D. Myers, R. Shabetai, J.C. Cole, and D. Johnston. Digital boundary detection, volumetric and wall motion analysis of left ventricular cineangiograms. Comput. Biol. Med., 6: 73–85, 1976.

    Article  Google Scholar 

  44. G.E. Sotak and K.L. Boyer. The Laplacian-of-Gaussian kernel: A formal analysis and design procedure for fast, accurate full-frame output. Comput. Vision, Graph. Image Process., 48: 147–189, 1989.

    Article  Google Scholar 

  45. S.A. Stansfield. ANGY: A rule-based expert system for automatic segmentation of coronary vessels from digital subtracted angiograms. IEEE Trans. Patt. Anal Mach. Intell, 8: 183–199, 1986.

    Article  Google Scholar 

  46. D.D. Streeter and W.T. Hanna. Engineering mechanics for successive states in the canine left ventricle myocardium. Circ. Res., 33: 639–664, 1973.

    Google Scholar 

  47. D. Terzopoulos. Regularization of inverse problems involving discontinuities. IEEE Trans. Patt. Anal Mach. Intell, 8: 413–424, 1986.

    Article  Google Scholar 

  48. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Comput. Graph., 22: 4: 279–287, 1987.

    Google Scholar 

  49. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering 3D shape and non-rigid motion. Artif. Intell., 36: 91–123, 1988.

    Article  MATH  Google Scholar 

  50. V. Torre and T.A. Poggio. On edge detection. IEEE Trans. Patt. Anal Mach. Intell, 8: 147–162, 1986.

    Article  Google Scholar 

  51. S. Tsuji and H. Nakano, editors. Knowledge-based Identification of Artery Branches in Cine-angiograms. Proceedings of the International Joint Conference on Artificial Intelligence, 1981, 710–718.

    Google Scholar 

  52. D. Tzvioni, G. Diamond, M. Pichler, K. Stankus, R. Vas, and J. Forrester. Analysis of regional ischemic left ventricular dysfunction by quantitative cineangiography. Circulation, 60: 1278–1283, 1979.

    Google Scholar 

  53. L.K. Waldman, Y.C. Fung, and J.W. Covell. Transmural myocardial deformation in the canine left ventricle. Circ. Res., 57: 152–163, 1985.

    Google Scholar 

  54. F.C.P. Yin. Ventricular wall stress. Circ. Res., 49: 829–842, 1981.

    Google Scholar 

  55. A.A. Young. Epicardial Deformation from Coronary Cinéangiograms. Ph.D. thesis, University of Auckland, New Zealand, 1990.

    Google Scholar 

  56. A.A. Young. Image Processing of Coronary Angiograms. M.E. thesis, University of Auckland, New Zealand., 1986.

    Google Scholar 

  57. A.A. Young, P.J. Hunter, and B.H. Smaill. Epicardial surface estimation from coronary cinéangiograms. Comput. Vision, Graph. Image Process., 47: 111–127, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Young, A. (1991). Epicardial Deformation From Coronary Cinéangiograms. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics