Skip to main content

Protein Degradation in Aquatic Environments

  • Chapter
Microbial Enzymes in Aquatic Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Organic matter degradation in aquatic environments has been studied for a long time by sanitary engineers and geologists concerned with predicting the rate of this process, either in polluted rivers, in sewage treatment plants or in sediment. Models have been established for this purpose, and most of them derive from the early Streeter and Phelps (1925) model where the rate of organic matter degradation is simply assumed to be proportional to the organic load. In order to take into account the differing susceptibilities to bacterial attack of the various classes of compounds making up the overall organic matter, Jorgensen (1978), Berner (1980) and Westrich and Berner (1984) suggested the use of “multi G’s-first order kinetics,” considering a number of organic matter fractions, each with its own first-order degradation constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berner, R.A. 1980. A rate model for organic matter decomposition during bacterial sulfate reduction in marine sediments. pp. 35–45 in Daumas, R. (editor), Biogeochimie de la Matiere Organique a L’interface Eau-Sediment Marin. C.N.R.S., Paris.

    Google Scholar 

  • Billen, G. 1984. Heterotrophic utilization and regeneration of nitrogen. pp. 313–355 in Hobbie, J.E. and Williams, P.J.LeB. (editors), Heterotrophic Activity in the Sea. Plenum, New York.

    Google Scholar 

  • Billen, G. and A. Fontigny. 1987. Dynamics of Phaeocystis-dominated bloom in Belgian coastal waters. II. Bacterioplankton dynamics. Marine Ecology Progress Series37: 249–257.

    Article  Google Scholar 

  • Billen, G., Lancelot, C. and S. Mathot. 1988. Ecophysiology of phyto-and bacterioplankton growth in the Prydz Bay area during the austral summer 1987. Part II. Bacterioplankton activity. Proceedings of Belgian Colloqium on Antarctic Research. Brussel. 146 pp.

    Google Scholar 

  • Billen, G., Joiris, C., Meyer-Reil, L.A. and H. Lindeboom. 1990a. Ecological role of bacteria in the North Sea ecosystem. Netherland Journal of Sea Research (in press).

    Google Scholar 

  • Billen, G., Servais, P. and S. Becquevort. 1990b. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: Bottom-up or top-down control? Developments in Hydrobio In D.J. Bonin and H.L. Golterman (editors), Fluxes Between Trophic Levels and Through the Water-Sediment Interface. Developments in Hydrobiology. Elsevier (in press).

    Google Scholar 

  • Bjørnsen, P.K. 1988. Phytoplankton release of organic matter: Why do healthy cells do it? Limnology and Oceanography33: 151–159.

    Article  Google Scholar 

  • Chróst, R.J. 1990. Microbial ectoennzymes in aquatic environments. pp. 47–78 in J. Overbeck and R.J. Christ (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York.

    Google Scholar 

  • Chróst, R.J. 1989. Characterization and significance of ß-glucosidase activity in lake water. Limnology and Oceanography34: 660–672.

    Article  Google Scholar 

  • Fontigny, A., Bilien, G. and J. Vives-Rego. 1987. Kinetic characteristics of exoproteolytic activity in coastal seawater. Est. Coastal Shelf Science25: 127–133.

    Article  CAS  Google Scholar 

  • Fuhrman, J.A. 1987. Close coupling between release and uptake of dissolved free amino acids in sea water studied by an isotope dilution approach. Marine Ecology Progress Series37: 45–52.

    Article  CAS  Google Scholar 

  • Hashimoto, S., Fujiwara, K. and K. Fuwa. 1985. Distribution and characteristics of carboxypeptidase activity in pond, river and seawater in the vicinity of Tokyo. Limnology and Oceanography30: 631–645.

    Article  CAS  Google Scholar 

  • Hobbie, J.E. and R.T. Wright. 1965. Competition between planktonic bacteria and algae for organic solutes. Memorie Istituto Italiano di Idrobiologia, Supplement18: 175–185.

    Google Scholar 

  • Hollibaugh, J.T. and F. Azam. 1983. Microbial degradation of dissolved proteins in sea water. Limnology and Oceanography28: 1104–1116.

    Article  CAS  Google Scholar 

  • Holzer, H. 1980. Control of proteolysis. Annual Reviews in Microbiology49: 63–91.

    CAS  Google Scholar 

  • Hoppe, H.G. (1983): Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Marine Ecology Prog-ress Series11: 299–308.

    Article  CAS  Google Scholar 

  • Jassby, A.D. and C.R. Goldman. 1974. Loss rates from a lake phytoplankton community. Limnology and Oceanography19: 618–627.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B. 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation of mathematical models. Geomicrobiology Journal1: 29–47.

    Article  Google Scholar 

  • Lancelot, C. and G. Billen. 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Advances in Aquatic Microbiology3: 2621.

    Google Scholar 

  • Lancelot, C. and G. Billen. 1989. Ecophysiology of phyto-and bacterioplankton growth in the Southern Ocean. pp. 1–105 in Caschetto, S. (editor), Plankton Ecology, vol. 1. Science Policy Office, Brussels.

    Google Scholar 

  • Lancelot, C. and S. Mathot. 1988. Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters. Marine Ecology Progress Series37: 239–248.

    Article  Google Scholar 

  • Lancelot, C., Mathot, S. and N.J.P. Owens. 1983. Modelling protein synthesis, a step to an accurate estimate of net primary production: The case of Phaeocystis pouchetiicolonies in Belgian coastal waters. Marine Ecology Progress Series32: 193–202.

    Article  Google Scholar 

  • Larsson, U. and A. Hagstrom. 1979. Phytoplankton exudate release as energy source for the growth of pelagic bacteria. Marine Biology52: 199–206.

    Article  Google Scholar 

  • Lehman, J.T., Botkin, D.B. and G.E. Likens. 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnology and Oceanography20: 343–364.

    Article  Google Scholar 

  • Lichtfield, C.D. and J.M. Prescott. 1970. Regulation of proteolytic enzyme production by Aeromonas proteolytica. I. Extracellular endopeptidases. Canadian Journal of Microbiology16: 17–22.

    Article  Google Scholar 

  • Long, S., Mothibeli, F.T., Robb, A. and D.R. Woods. 1981. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticusstrain. Journal of General Microbiology127: 193–199.

    PubMed  CAS  Google Scholar 

  • McDonald, I.J. and A.K. Chambers. 1966. Regulation of protease formation in a species of Micrococcus. Canadian Journal of Microbiology12: 1175–1185.

    Article  CAS  Google Scholar 

  • Münster, U. and R.J. Chrtist. 1990. Origin, composition and microbial utilization of dissolved organic matter. pp. 8–46 in J. Overbeck and R.J. Chr•st (editors), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York.

    Google Scholar 

  • Parsons, T.R. and J.D.H. Strickland. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Research8: 211–222.

    Google Scholar 

  • Priest, F.G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Review41: 711–753.

    CAS  Google Scholar 

  • Servais, P. 1986. Etude de la dégradation de matiére organique par les bactéries hétérotrophes en riviére. Developpement d’une démarche méthodologique et application â la Meuse belge. Université Libre de Bruxelles, PhD. Thesis. 271 pp.

    Google Scholar 

  • Servais, P., Billen, G. and J. Vives-Rego. 1985. Rate of bacterial mortality in aquatic environments. Applied and Environmental Microbiology49: 1448–1454.

    PubMed  CAS  Google Scholar 

  • Simon, M. and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series51: 201–213.

    Article  CAS  Google Scholar 

  • Somville, M. and G. Billen. 1983. A method for determining exoproteolytic activity in natural waters. Limnology and Oceanography28: 190–193.

    Article  CAS  Google Scholar 

  • Streeter, H.W. and E.B. Phelps. 1925. Study of the pollution and natural purification of the Ohio River. III. Factors concerned in the phenomena of oxidation and reaeration. Bulletin of United States Public Health ServicesNo 146.

    Google Scholar 

  • Westrich, J.T. and R.A. Berner. 1984. The role of sedimentary organic matter in bacterial sulfate reduction. The G model tested. Limnology and Oceanography29: 236–249.

    Article  CAS  Google Scholar 

  • Wolter, K. 1982. Bacterial incorporation of organic substances released by natural phy-toplankton populations. Marine Ecology Progress Series7: 287–295.

    Article  Google Scholar 

  • Wright, R.T. and J.E. Hobbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology47: 447–453.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Billen, G. (1991). Protein Degradation in Aquatic Environments. In: Chróst, R.J. (eds) Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3090-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3090-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7793-4

  • Online ISBN: 978-1-4612-3090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics