Skip to main content

Szegő Type Asymptotics for Minimal Blaschke Products

  • Conference paper
Progress in Approximation Theory

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 19))

Abstract

Let μ be a positive, finite Borel measure on [0,2π). For 0 <r< 1, 0 <p< ∞, let

$$En,p(d\mu ;r): = _{{B_n}}^{\inf }\left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {{{\left| {{B_n}\left( {r{e^{i\theta }}} \right)} \right|}^p}d\mu \left( \theta \right)} } \right\}1/p,$$

where the infimum is taken over all Blaschke products of ordernhaving zeros in |z| < 1. LetB * n denote a minimal Blaschke product and letG(μ ) denote the geometric mean of the derivative of the absolutely continuous part ofμ. In the first part of the paper we present a self-contained proof of a result due to Parfenov; namelyE n,p ~ r n G(μ′)1/p as n → ∞. In the second part we describe the extension of the classical Szegő function D(z) and prove that B * n (z) ~ z n G(µ′)1/p/D(z)2/p as n → ∞, uniformly on compact subsets of the annulus r < z < 1/r. Some generalizations and applications are also discussed.

Research was conducted while visiting the Institute or Constructive Mathematics, Department of Mathematics, University of south Florida.

Research supported in part ny the Nationl Science Foundation under grant DMS-881-4026.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, S.D., Function Theory on Planar Domains, John Wiley & Sons, New York, 1983.

    MATH  Google Scholar 

  2. Fisher, S.D., Micchelli, C.A., The n-widths of sets of analytic functions, Duke Math. J., 47(1980), 789–801.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fisher, S.D., Micchelli, C.A., Optimal sampling of holomorphic functions, Amer. J. Math., 106(1984), 593–609.

    Article  MathSciNet  MATH  Google Scholar 

  4. Geronimus, J., On extremal problems in the space L (p)σ , Math Sbornik, 31(1952), 3–26. (Russian).

    MathSciNet  Google Scholar 

  5. Grenander, U., Szegő, G., Toeplitz Forms and their Applications, Chelsea, New York, 1984.

    MATH  Google Scholar 

  6. Hille, E., Analytic Function Theory, vol. 2, Ginn and Company, Boston, 1962.

    MATH  Google Scholar 

  7. Hayman, W.K., Kennedy, P.B., Subharmonic Functions, Academic Press, London, 1976.

    MATH  Google Scholar 

  8. Koosis, Paul, Introduction to H p Spaces, London Math Soc. Lecture Notes Series 40, Cambridge Univ. Press, Cambridge, 1980.

    Google Scholar 

  9. Levin, A.L., Tikhomirov, V.M., On a theorem of Erokhin, Appendix to V.D. Erokhin, Best linear approximations of functions analytically continuable from a given continuum into a given region, Russ. Math. Surveys, 23(1968), 93–135.

    Article  Google Scholar 

  10. Li, X., Pan, K., Asymptotics of L p extremal polynomials on the unit circle, to appear in J. Approx. Theory.

    Google Scholar 

  11. Nevai, P., Weakly convergent sequences of functions and orthogonal polynomials, J. Approx. Theory 65(1991), 322–340.

    Article  MathSciNet  MATH  Google Scholar 

  12. Parfenov, O.G., Widths of a class of analytic functions, Math. USSR Sbornik, 45(1983), 283–289.

    Article  MATH  Google Scholar 

  13. Parfenov, O.G., The singular numbers of imbedding operators for certain classes of analytic and harmonic functions, J. Soviet Math., 35(1986), 2193–2200.

    Article  MATH  Google Scholar 

  14. Parfenov, O.G., Asymptotics of the singular numbers of imbedding operators for certain classes of analytic functions, Math. USSR Sbornik, 43(1982), 563–571.

    Article  MATH  Google Scholar 

  15. Pinkus, Allan, n-Widths in Approximation Theory, Springer-Verlag, Heidelberg, 1985.

    MATH  Google Scholar 

  16. Saff, E.B., Orthogonal polynomials from a complex perspective, In: Orthogonal Polynomials: Theory and Practice (Paul Nevai, ed.), Kluwer Acad. Pub., Dordrecht (1990), 363–393.

    Google Scholar 

  17. Szegő, G., Orthogonal Polynomials, Coll. Publ., vol. 23, Amer. Math. Soc, Providence, R.I., 1975.

    Google Scholar 

  18. Tsuji, M., Potential Theory in Modern Function Theory, Dover, New York, 1959.

    MATH  Google Scholar 

  19. Widom, H. Rational approximation and n-dimensional diameter, J. Approx. Theory, 5(1972), 343–361.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Levin, A.L., Saff, E.B. (1992). Szegő Type Asymptotics for Minimal Blaschke Products. In: Gonchar, A.A., Saff, E.B. (eds) Progress in Approximation Theory. Springer Series in Computational Mathematics, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2966-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2966-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7737-8

  • Online ISBN: 978-1-4612-2966-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics