Skip to main content

Immunity in Haematophagous Insect Vectors of Parasitic Infection

  • Chapter
Advances in Disease Vector Research

Part of the book series: Advances in Disease Vector Research ((VECTOR,volume 9))

Abstract

Since the early specialist studies of Salt on invertebrate immunity (eg. 175, 176) when it was widely accepted that invertebrates are able to recognise infections as foreign, there has been an upsurge in the study of insect immunity. A number of comprehensive reviews have recently been compiled on the subject, to the extent that volumes exclusively devoted to the topic of invertebrate immunity have been edited (eg. 22, 72, 114). This article is specifically concerned with the progress that has been made in our understanding of the immunity of potential insect vectors of parasitic infection, to the pathogens that they may transmit. The word ‘potential’ is deliberately used in view of the fact that successful immunity may render an insect a non-vector. It is intended, that by covering the whole subject of immunity in haematophagous vectors the reader will be pointed to sections of the literature which will help further in-depth study, rather than cover the entire field in depth as well as breadth. In addition the intention is to introduce some findings of this laboratory, which may stimulate research along similar lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agudelo-Silva, F., and Spielman, A., 1985, Penetration of mosquito midgut wall by sheathed microfilariae, J. Invert. Path. 45:117–119.

    CAS  Google Scholar 

  2. Arnold, J.W., 1979, Controversies about hemocyte types in insects, in Gupta, A.P. (ed): Insect Hemocytes. Development, forms, functions, and techniques. Cambridge University Press, England, pp. 231–258.

    Google Scholar 

  3. Ashida, M., and Dohke, K., 1980, Activation of prophenoloxidase by the activating enzyme of the silkworm, Bombyx mori. Ins. Biochem. 10:37–47.

    CAS  Google Scholar 

  4. Ashida, M., Kinoshita, K., and Brey, P.T., 1990, Studies on prophenoloxidase activation in the mosquito Aedes aegypti L. Eur. J. Biochem. 188:507–515.

    PubMed  CAS  Google Scholar 

  5. de Azambuja, P., Freitas, C.C., and Garcia, E.S., 1986, Evidence and partial characterization of an inducible antibacterial factor in the haemolymph of Rhodnius prolixus, J. Insect. Physiol. 32:807–812.

    Google Scholar 

  6. Bain, O., Durette-Desset, M., and De Leon, R., 1974, Onchocercose au Guatemala: l’ingestion des microfilaries par Simulium ochraceum et leur passage dans I’hemocele de ce vecteur, Ann. Parasit. Hum. Comp. 49:467–487.

    CAS  Google Scholar 

  7. Barraud, P.J., and Covell, G., 1928, The morphology of the buccal cavity in anopheline and culicine mosquitoes, Ind. J. Med. Res. 15:671–679.

    Google Scholar 

  8. Bartlett, C.M., 1984, Development of Dirofilaria scapiceps (Leidy, 1886) (Nematoda: Filarioidea) in Aedes spp. and Mansonia perturbons (Walker) and responses of mosquitoes to infection, Can. J. Zool. 62:112–129.

    Google Scholar 

  9. Beckett, E.B., 1990, Species variation in mosquito flight-muscle damage resulting from a single filarial infection and its repercussions on a second infection, Parasitol. Res. 76:606–609.

    PubMed  CAS  Google Scholar 

  10. Beerntsen, B.T., Luckhart, S., and Christensen, B.M., 1989, Brugia malayi and Brugia pahangi: inherant difference in the immune activation of the mosquitoes Armigeres subalbatus and Aedes aegypti., J. Parasit. 75:76–81.

    PubMed  CAS  Google Scholar 

  11. Beier, J.C., 1983, Effects of gregarine parasites on the development of Dirofilaria immitis in Aedes triseriatus (Diptera: Culicidae), J. Med. Entomol. 20:70–75.

    PubMed  CAS  Google Scholar 

  12. Berner, R., Rudin, W., and Hecker, H., 1983, Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions, J. Ultrastruct. Res. 83:195–204.

    PubMed  CAS  Google Scholar 

  13. Bianco, A.E., and El Sinnary, K., 1980, Infection of Aedes aegypti with Onchocerca gutturosa. J. Helm. 54.105–107.

    CAS  Google Scholar 

  14. Bianco, A.E., Townson, S., El Sinnary, K., and Nelson, G.S., 1979, Successful development of Onchocerca from cattle in Aedes, Anopheles, Culex and Culicoides sp., Parasitol. 79:35.

    Google Scholar 

  15. Billingsley, P.F., 1990, The midgut ultrastructure of hematophagous insects., Ann. Rev. Entomol. 35:219–248.

    Google Scholar 

  16. Boman, H.G., 1982, Humoral immunity in insects and the counter defence of some pathogens, Fortschritte der Zoologie 27: 211–222.

    CAS  Google Scholar 

  17. Boman, H., Boman, A., and Pigon, A., 1981, Immune and injury responses in cecropia pupae—RNA isolation and comparison of protein synthesis in vivo and in vitro., Ins. Biochem. 11: 33–42.

    CAS  Google Scholar 

  18. Boman, H.G., Faye, I., Hofsten, P.V., Kockum, K., Lee, J.-L., Xanthopoulos, K.G., Bennich, H., Engstrom, A., Merrifield, B.R., and Andreu, D., 1986, Antibacterial immune proteins in insects—A review of some current perspectives, Brehelin, M. (ed): Immunity in Invertebrates. Cells, molecules, and defense reactions. Springer-Verlag, pp. 63–73.

    Google Scholar 

  19. Borovsky, D., and Schiein, Y., 1987, Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med. Vet. Ent. 1:235–242.

    CAS  Google Scholar 

  20. Bosworth, W., and Ewert, A., 1973, Superinfection of Aedes togoi with Brugia malayi, J. Med. Entomol. 10:217–219.

    PubMed  CAS  Google Scholar 

  21. Bradley, T.J., and Nayar, J.K., 1985, Intracellular melanization of the larvae of Dirofilaria immitis in the malpighian tubules of the mosquito, Aedes sollicitans, J. Invert. Path. 45:339–345.

    CAS  Google Scholar 

  22. Brehelin, M., 1986, Immunity in invertebrates. Cells, molecules and defense reactions, Spring er-Verlag, pp. 233.

    Google Scholar 

  23. Brehelin, M., and Zachary, D., 1986, Insect haemocytes: A new classification to rule out the controversy, in Brehelin, M. (ed): Immunity in invertebrates. Cells, molecules and defense reactions, Springer Verlag, pp. 36–48.

    Google Scholar 

  24. Briegel, H., 1975, Excretion of proteolytic enzymes by Aedes aegypti after a blood meal, J. Ins. Physiol. 21:1681–1684.

    CAS  Google Scholar 

  25. Bruce-Chwatt, L.J., 1945, The morphology of the pharyngeal armature in Anopheles gambiae var. melas from Southern Nigeria, Ann. Trop. Med. Parasit. 39:124–128.

    Google Scholar 

  26. Brug, S.L., 1932, Chitinization of parasites in mosquitoes, Bull. Ent. Res. 23: 229–231.

    Google Scholar 

  27. Bryan, J.H., Oothuman, P., Andrews, B.J., and McGreevy, P.B., 1974, Effects of pharyngeal armatures of mosquitoes on microfilariae of Brugia pahangi., Trans. Roy. Soc. Trop. Med. Hyg. 68:14–15.

    PubMed  CAS  Google Scholar 

  28. Burkot, T.R., Molineaux, L., Graves, P.M., Paru, R., Battistutta, D., Dagoro, H., Barnes, A., Wirtz, R.A., and Garner, P., 1990, The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in ano-phelines, Parasit. 100:369–375.

    Google Scholar 

  29. Casteels, P., Ampe, G., Jacobs, F., Vaeck, M., and Tempst, P., 1989, Apidaecins: Antibacterial peptides from honeybees, EMBO J. 8:2387–2391.

    PubMed  CAS  Google Scholar 

  30. Chen, C.C., 1988, Further evidence of both humoral and cellular encapsulation of sheathed microfilariae of Brugia pahangi in Anopheles quadrimaculatus, Int. J. Parasit. 18:819–826.

    CAS  Google Scholar 

  31. Chen, C.C., and Laurence, B.R., 1985a, The encapsulation of the sheaths of microfilariae of Brugia pahangi in the haemocoel of mosquitoes, J. Parasit. 71:834–836.

    CAS  Google Scholar 

  32. Chen, C.C., and Laurence, B.R., 1985b, An ultrastructural study on the encapsulation of microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus, Int. J. Parasit. 15:421–428.

    CAS  Google Scholar 

  33. Chen. C.C., and Shih, C.M., 1988, Exsheathment of microfilariae of Brugia pahangi in the susceptible and refractory strains of Aedes aegypti., Ann. Trop. Med. Parasit. 82:201–206.

    PubMed  CAS  Google Scholar 

  34. Cherian, P.V., Stromberg, B.E., Weiner, O.J., and Soulsby, E.J.L., 1980, Fine structure and cytochemical evidence for the presence of polysaccharides surface coat of Dirofilaria immitis microfilariae, Int. J. Parasit. 10:227–233.

    CAS  Google Scholar 

  35. Christensen, B.M., 1986, Immune mechanisms and mosquito-filarial worm relationships, Symp. Zoo. Soc. London, 56:145–160.

    Google Scholar 

  36. Christensen, B., Fink, J., Merrifield, R.B., and Mauzerall, D., 1988, Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes, Proc. Natl. Acad. Sci. USA, 85:5072–5076.

    PubMed  CAS  Google Scholar 

  37. Christensen, B.M., Forton, K.F., LaFond, M.M., and Grieve, R.B., 1987, Surface changes on Brugia pahangi microfilariae and their association with immune evasion in Aedes aegypti, J. Invert. Pathol. 53:216–219.

    Google Scholar 

  38. Christensen, B.M., and Gleason, L.N., 1984, Defense reactions of mosquitoes to filarial worms: Comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae, J. Invert. Pathol. 44:267–274.

    CAS  Google Scholar 

  39. Christensen, B.M., Huff, B.M., and Jianyong, L., 1990, Effect of irradiation on the hemocyte-mediated immune response of Aedes aegypti against microfilariae, J. Invert. Path. 56:123–127.

    CAS  Google Scholar 

  40. Christensen, B.M., LaFond, M.M., and Christensen, L.A., 1986, Defense reactions of mosquitoes to filarial worms: Effect of host age on the immune response to Dirofilaria immitis, J. Parasit. 72: 212–215.

    PubMed  CAS  Google Scholar 

  41. Christensen, B.M., and Sutherland, D.R., 1984, Brugia pahangi: Exsheathment and midgut penetration in Aedes aegypti. Trans. Am. Micr. Soc., 103:423–433.

    Google Scholar 

  42. Collins, F.H., Sakai, R.K., Vernick, K.D., Paskewitz, S., Seeley, D.C., Miller, L.H., Collins, W.E., Campbell, C.C., and Gwadz, R.W., 1986, Genetic selection of a Plasmodium refractory strain of the malaria vector Anopheles gambiae, Science 234:607–610.

    PubMed  CAS  Google Scholar 

  43. Collins, R.C., and Jones, R.H., 1978, Laboratory transmission of Onchocerca cervicalis with Culicoides variipennis, Am. J. Trop. Med. Hyg. 27:46–50.

    PubMed  CAS  Google Scholar 

  44. Coluzzi, M., and Trabucchi, R., 1968, Importanza dell’armatura buccofaringea in Anopheles e Culex in relazione alle infezioni con Dirofilaria, Parassitologia, 10:47–59.

    Google Scholar 

  45. Connal, A., and Connal, S.L.M., 1922, The development of Loa loa (Guyot) in Chrysops silacea (Austen) and in Chrysops dimidiata (van der Wulp), Trans. Roy. Soc. Trop. Med. Hyg. 16:64–89.

    Google Scholar 

  46. Crampton, J., Morris, A., Lycett, G., Warren, A., and Eggleston, P., 1990, Transgenic mosquitoes: A future vector control strategy, Parasit. Today 6:31–36.

    CAS  Google Scholar 

  47. Croft, S.L., East, J.S., and Molyneux, D.H., 1982, Anti-trypanosomal factor in haemolymph of Glossina, Acta Trop. 39:293–302.

    PubMed  CAS  Google Scholar 

  48. Curtis, C.F., and Graves, P.M., 1983, Genetic variation in the ability of insects to transmit filariae, trypanosomes and malarial parasites, Current Topics in Vector Research, 1:31–62.

    Google Scholar 

  49. Devaney, E., 1985, Lecitin-binding characteristics of Brugia pahangi microfilariae, Trop. Med. Parasit. 36:25–28.

    CAS  Google Scholar 

  50. Dimarcq, J.L., Keppi, E., Dunbar, B., Lambert, J., Reichhart, J.M., Hoffman, D., Rankine, S.M., Fothergil, J.E., and Hoffmann, J.A., 1988, Insect immunity. Purification and characterisation of a family of novel inducible antibacterial proteins from immunised larvae of the dipteran Phormia terranovae and complete amino acid sequence of predominant member, dipericin A, Eur. J. Biochem. 171:17–22.

    PubMed  CAS  Google Scholar 

  51. Duke, B.O.L., 1968, Studies of factors influencing the transmission of onchocerciasis. VI. The infective biting potential of Simulium damnosum in different bio-clamatic zones and its influence on the transmission potential, Ann. Trop. Med. Parasit. 62:164–170.

    PubMed  CAS  Google Scholar 

  52. Duke, B.O.L., and Lewis, D.J., 1964, Studies on factors influencing the transmission of onchocerciasis. II. Observations on the effect of the peritrophic membrane in limiting the development of Onchocerca volvulus microfilariae in Simulium damnosum, Ann. Trop. Med. Parasit. 58:83–88.

    PubMed  CAS  Google Scholar 

  53. Dunn, P.E., 1990, Humoral immunity in insects, BioSci. 40:738–744.

    Google Scholar 

  54. East, J., Molyneux, D.H., Maudlin, I., and Dukes, P., 1983, Effects of Glossina haemolymph on salivarían trypanosomes in vitro, Ann. Trop. Med. Parasit. 77:97–99.

    PubMed  CAS  Google Scholar 

  55. Eichler, D.A., 1973, Studies on Onchocerca gutturosa (Neumann 1910) and its development in Simulium ornatum (Meigen 1818). 3. Factors affecting the development of the parasite in its vector, J. Helm. 47:73–88.

    CAS  Google Scholar 

  56. Engstrom, P., Carlsson, A., Engstrom, A., Tao, Z.J., and Bennich, H., 1984, The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli, EMBO J. 3:3347–3351.

    PubMed  CAS  Google Scholar 

  57. Evans, D.A., and Ellis, D.S., 1975, Penetration of mid-gut cells of Glossina morsitans morsitans by Trypanosoma brucei rhodesiense, Nature, London, 258: 231–233.

    PubMed  CAS  Google Scholar 

  58. Esslinger, J.H., 1962, Behaviour of microfilariae of Brugia pahangi in Anopheles quadrimaculatus, Am. J. Trop. Med. Hyg. 11:749–758.

    Google Scholar 

  59. Ewert, A., 1965a, Comparative migration of microfilariae and development of Brugia pahangi in various mosquitoes, Am. J. Trop. Med. Hyg. 14:254–259.

    CAS  Google Scholar 

  60. Ewert, A., 1965b, Exsheathment of the microfilariae of Brugia pahangi in susceptible and refractory mosquitoes, Am. J. Trop. Med. Hyg. 14:260–262.

    CAS  Google Scholar 

  61. Eyles, D.E., 1951, Studies on Plasmodium gallinaceum 1. Characteristics of the infection in the mosquito Aedes aegytpi, Am. J. Trop. Med. Hyg. 55:386–391.

    Google Scholar 

  62. Ferro, E.T., and Theis, J.H., 1984, Antigenic sharing between filarial worms and their vectors, Mosq. Cont. Res. Ann. Rep. University of California, Davis, pp. 124–125.

    Google Scholar 

  63. Forton, K.F., Christensen, B.M., and Sutherland, D.R., 1985, Ultrastructure of the melanization response of Aedes trivittatus against inoculated Dirofilaria immitis microfilariae, J. Parasit. 71:331–341.

    PubMed  CAS  Google Scholar 

  64. Frizzi, G., Rinaldi, A., and Bianchi, U., 1975, Genetic studies on mechanisms influencing the susceptibility of anopheline mosquitoes to plasmodial infection, Mosq. News 35:505–513.

    Google Scholar 

  65. Furman, A., and Ash, L.R., 1983, Analysis of Brugia pahangi microfilariae surface carbohydrates: comparison of the binding of a panel of fluoresceinated lectins to mature in vivo—derived and immature in utero—derived microfilariae, Acta Trop. 40:45–51.

    PubMed  CAS  Google Scholar 

  66. Garms, R., 1983, Studies on the transmission of Onchocerca volvulus by species of the Simulium damnosum complex occurring in Liberia, Z. angew. Zool. 70:101–117.

    Google Scholar 

  67. Gass, R.F., and Yeates, R.A., 1979, In vitro damage of cultured ookinetes of Plasmodium gallinaceum by digestive proteinases from susceptible Aedes aegypti, Acta Trop. 36:243–252.

    PubMed  CAS  Google Scholar 

  68. Goldstein. I.J., Hughes, R.C., Monsigny, M., Osawa, T., and Sharon, N., 1980. What should be called a lectin? Nature 285:66.

    Google Scholar 

  69. Gotz, P., and Vey, A., 1974, Humoral encapsulation in Diptera (Insecta): defense reactions of Chironomus larvae against fungi, Parasit. 68:193–205.

    CAS  Google Scholar 

  70. Graf, R., Raikhel, A.S., Brown, M.R., Lea, A.O., and Briegel, H., 1986, mosquito trypsin: immunocytochemical localization in the midgut of blood-fed Aedes aegypti, Cell Tiss. Res. 245:19–27.

    CAS  Google Scholar 

  71. Gupta, A.P. (ed), 1979, Insect Hemocytes. Development, forms, functions and techniques, Cambridge University Press, England.

    Google Scholar 

  72. Gupta, A.P., 1986, Hemocytic and Humoral Immunity in Arthropods, John Wiley and Sons, pp. 533.

    Google Scholar 

  73. Gwadz, R.W., Kaslow, D., Lee, J.-Y., Maloy, L., Zasloff, M., and Miller, L.H., 1989, Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes, Inf. Imm. 57:2628–2633.

    CAS  Google Scholar 

  74. Ham, P.J., 1986, Acquired resistance to Onchocerca lienalis infections in Simulium ornatum Meigen and Simulium lineatum Meigen following passive transfer of haemolymph from previously infected simuliids (Diptera, Simuliidae), Parasit. 92:269–277.

    Google Scholar 

  75. Ham, P.J., Baxter, A.J., Bockarie, M., Thomas, P., and Chalk, R., 1989, Vector immunity to onchocerciasis, Trop. Med. Parasit. 40:84.

    Google Scholar 

  76. Ham, P.J., and Bianco, A.E., 1983a, Development of Onchocerca volvulus from cryopreserved microfilariae in three temperate species of laboratory reared blackflies, Tropenmed. Parasit. 34:137–139.

    CAS  Google Scholar 

  77. Ham, P.J., and Bianco, A.E., 1983b, Screening of some British simuliids for susceptibility to experimental Onchocerca lienalis infection, Z. Parasitenkd. 69: 765–772.

    CAS  Google Scholar 

  78. Ham, P.J., and Garms, R., 1985, Development of forest Onchocerca volvulus in Simulium yahense and Simulium sanctipauli following intrathoracic injection and ingestion of microfilariae, Trop. Med. Parasit. 36:25.

    Google Scholar 

  79. Ham, P.J., and Garms, R., 1987, Failure of Onchocerca gutturosa to develop in Simulium soubrense and Simulium yahense from Liberia, Trop. Med. Hyg. 38: 135–136.

    CAS  Google Scholar 

  80. Ham, P.J., and Garms, R., 1988, The relationship between innate susceptibility to Onchocerca, and haemolymph attenuation of microfilarial motility in vitro using British and West African blackflies, Trop. Med. Parasit. 39:230–234.

    CAS  Google Scholar 

  81. Ham, P.J., Smail, A.J., and Groeger, B.K., 1988, Surface carbohydrate changes on Onchocerca lienalis larvae as they develop from microfilariae to the infective third-stage in Simulium ornatum, J. Helm. 62:195–205.

    CAS  Google Scholar 

  82. Ham, P.J., Zulu, M.B., and Zahedi, M.B., 1988, In vitro haemagglutination and attenuation of microfilarial motility by haemolymph from individual blackflies (Simulium ornatum) infected with Onchocerca lienalis, Med. Vet. Entomol. 2:7–18.

    PubMed  CAS  Google Scholar 

  83. Hawking, F., and Worms, M., 1961, Transmission of filarioid nematodes, Ann. Rev. Entomol. 6:413–432.

    CAS  Google Scholar 

  84. Ho, B.C., and Kan, S.P., 1971, Evidence of the intracellular development of Breinlia sergenti (Dipetalonematidae) in the fat cells of mosquitoes, J. Parasit. 57:1145–1146.

    PubMed  CAS  Google Scholar 

  85. Ho, B.C., Yap, E.H., and Singh, M., 1982, Melanisation and encapsulation in Aedes aegypti and Aedes togoi in response to parasitization by a filarioid nematode (Breinlia booliata), Parasitol. 85:567–575.

    Google Scholar 

  86. Huber, M., Cabib, E., and Miller, L.H., 1991, Malaria parasite chitinase and penetration of the mosquito peritrophic membrane, Proc. Natl. Acad. Sci. USA, 88:2807–2810.

    PubMed  CAS  Google Scholar 

  87. Huff, C.G., 1927, Studies on the infectivity of plasmodia of birds for mosquitoes, with special reference to the problem of immunity in the mosquito, Am. J. Hyg. 7:706–734.

    Google Scholar 

  88. Huff, C.G., 1934, Comparative studies on susceptible and insusceptible Culex pipiens in relation to infection with Plasmodium cathemerium and P. relictum, Am. J. Hyg. 19:123–147.

    Google Scholar 

  89. Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H.G., 1980, Insect immunity. Purification and properties of three inducible bactericidal proteins from haemolymph of immunized pupae of Hyalophora cecropia, Eur. J. Biochem. 106:7–16.

    PubMed  CAS  Google Scholar 

  90. Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H., and Boman, H.G., 1983, Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia, EMBO J. 2:571–576.

    PubMed  CAS  Google Scholar 

  91. Hultmark, D., Engstrom, A., Bennich, H., Kapur, R., and Boman, H.G., 1982, Insect immunity. Isolation and structure of cecropin D and four minor antibacterial components from cecropia pupae, Eur. J. Biochem. 127:207–217.

    PubMed  CAS  Google Scholar 

  92. Ibrahim, E.A.R., Ingram, G.A. and Molyneux, D.H., 1984, Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina, Tropenmed. Parasit. 35:151–156.

    CAS  Google Scholar 

  93. Ingram, G.A., and Molyneux, D.H., 1988a, Sugar specificities of anti-human ABO(H) blood group erythrocyte agglutinins (lectins) and haemolytic activity in the haemolymph and gut extracts of three Glossina species, Ins. Biochem. 18:269–279.

    CAS  Google Scholar 

  94. Ingram, G.A., Molyneux, D.H., 1988b, Lectins (agglutinins) and lysins in the haemolymph and gut extracts of the tsetse fly, Glossina fuscipes fuscipes, Bog-Hansen, T.C., and Freed, D.L.J. (eds): Lectins. Biology, Biochemistry, Clinical Biochemistry Sigma, pp. 63–68.

    Google Scholar 

  95. Irungu, L.W., 1987, Studies on the in vitro exsheathment of Brugia pahangi-2. The in vitro exsheathment of B. pahangi microfilariae incubated with mosquito tissues and cells, Ins. Sci. Appl. 8:49–51.

    Google Scholar 

  96. Iyengar, M.O.T., 1936. Entry of filaria larvae into the body cavity of the mosquito, Parasit. 28:190–194.

    Google Scholar 

  97. Jarosz, J., and Glinski, Z., 1990, Selective inhibition of cecropin-like activity of insect immune blood by protease from american foulbrood scales, J. Invert. Pathol. 56:143–149.

    CAS  Google Scholar 

  98. Jaynes, J.M., Burton, CA., Barr, S.B., Jeffers, G.W., Julian, G.R., White, K.L., Enright, F.M., Klei, T.R., and Laine, R.A., 1988, In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 2:2878–2883.

    PubMed  CAS  Google Scholar 

  99. Jones, J.C., 1962, Current concepts concerning insect haemocytes, Am. Zool. 2:209–246.

    Google Scholar 

  100. Kaaya, G.P., Flyg, G., and Boman, H.G., 1987, Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans, Ins. Biochem. 17:309–315.

    CAS  Google Scholar 

  101. Kaaya, G.P. and Ratcliffe, N.A., 1982, Comparative study of hemocytes and associated cells of some medically important dipterans, J. Morph. 173:351–365.

    PubMed  CAS  Google Scholar 

  102. Kaaya, G.P., Ratcliffe, N.A., and Alemu, P., 1986, Cellular and humoral defences of Glossina (Diptera: Glossinidae): Reactions against bacteria, trypanosomes and experimental implants, J. Med. Ent. 23:31–43.

    Google Scholar 

  103. Kartman, L., 1956, Notes on the encapsulation of Dirofilaria immitis in the mosquito Aedes aegypti. Am. J. Vet. Med. 17:810–812.

    CAS  Google Scholar 

  104. Kaslow, D.C., Syin, C., McCutchan, T.F., and Miller, L.H., 1989, Comparison of the primary structure of the 25KDa ookinete surface antigens of Plasmodium falciparum and Plasmodium gallinaceum reveal six conserved regions, Mol. Biochem. Parasit. 33:283–288.

    CAS  Google Scholar 

  105. Kaushal, N.A., Simpson, A.J.G., Hussain, R., and Ottesen, E.A., 1984, Brugia malayi: Stage specific expression of carbohydrates containing N-acetyl-D-glucosamine on the sheath surfaces of microfilariae, Exp. Parasit. 58:182–187.

    PubMed  CAS  Google Scholar 

  106. Kilama, W.L., Craig, G.B., 1969, Monofactorial inheritance of susceptibility to Plasmodium gallinaceum in Aedes aegypti, Ann. Trop. Med. Parasit. 63:419–432.

    PubMed  CAS  Google Scholar 

  107. Killick-Kendrick, R., 1979, The biology of Leishmania in phlebotomine sandflies, in Lumsden, W.H.R., and Evans, D.A. (eds): Biology of Kinetoplastida Volume 11, Academic Press, pp. 395–460.

    Google Scholar 

  108. Killick-Kendrick, R., 1987, The microecology of Leishmania in the gut and proboscis of the sandfly, NATO ASI ser. 11:397–406.

    Google Scholar 

  109. Killick-Kendrick, R., 1990, The life-cycle of Leishmania in the Sandfly with special reference to the form infective to the vertebrate host, Ann. Parasitol Hum. Comp. 65 Suppl. 2:37–42.

    Google Scholar 

  110. Knapp, T., and Crampton, J.M., 1990, Sequences related to immune proteins in the mosquito Aedes aegypti. Trans. Roy. Soc. Trop. Med. Hyg. 84:459.

    Google Scholar 

  111. Kobayashi, M., Ogura, N., and Yamamoto, H., 1986, Studies on filariasis. X: AS trial to analyse refractory mechanisms of the mosquitoes Aedes aegypti to the filarial larvae Brugia malayi by means of parabiotic twinning, Dokkyo J. Med. Sci. 13:61–67.

    Google Scholar 

  112. Komano, H., Mizuno, D., and Natori, S., 1980, Purification of a lectin induced in the haemolymph of Sarcophaga peregrina larvae on injury, J. Biol. Chem. 255:2929–2924.

    Google Scholar 

  113. Komano, H., Mizuno, D., and Natori, S., 1981, A possible mechanism of induction of insect lectin, J. Biol. Chem. 256:7087–7089.

    PubMed  CAS  Google Scholar 

  114. Lackie, A.M. (ed), 1986, Immune Mechanisms in Invertebrate Vectors, Zool. Soc. Lond. Symp. 56:285.

    Google Scholar 

  115. Lackie, A.M., 1988, Immune mechanisms in insects, Parasitology Today 4:98–105.

    PubMed  CAS  Google Scholar 

  116. Lackie, A.M., Tackle, G.B., and Tetley, L., 1985, Haemocytic encapsulation in the locust Schistocerca gregaria (Orthoptera) and in the cockroach Periplaneta americana (Dictyoptera), Cell Tiss. Res. 240:343–351.

    Google Scholar 

  117. LaFond, M.M., Christensen, B.M., and Lasee, B.A., 1985, Defense reactions of mosquitoes to filarial worms: Potential mechanisms for avoidance of the response by Brugia pahangi microfilariae, J. Invert. Pathol. 46:26–30.

    CAS  Google Scholar 

  118. Le Berre, R., 1966, Contribution a l’etude biologique et ecologique de Simulium damnosum Theobald, 1903 (Diptera, Simuliidae), Memoires O.R.S.TO.M. 17:204.

    Google Scholar 

  119. Lehane, M.J., 1976, Digestive enzyme secretion in Stomoxys calcitrans (Diptera: Muscidae), Cell Tiss. Res. 170:275–287.

    CAS  Google Scholar 

  120. Lehane, M.J., and Laurence, B.R., 1977, Flight muscle ultrastructure of susceptible and refractory mosquitoes parasitized by larval Brugia pahangi, Parasitol. 74:87–92.

    CAS  Google Scholar 

  121. Leonard, C., Ratcliffe, N.A., Rowley, A.F., 1985, The role of prophenoloxidase activation in non-self recognision and phagocytosos by insect blood cells, J. Ins. Physiol. 31:789–799.

    CAS  Google Scholar 

  122. LePage, P., Bitsch, F., Roecklin, D., Keppi, E., Dimarcq, J.-L., Reichhart, J.-M., Hoffmann, J.A., Roitsch, C., and Dorsselaer, A., 1991, Determination of disulfide bridges in natural and recombinant insect defensin A, Eur. J. Biochem. 196:735–742.

    PubMed  CAS  Google Scholar 

  123. Li, J.L., and Christensen, B.M., 1990, Immune competence of Aedes trivittatus hemocytes as assessed by lectin binding, J. Parasit. 76:276–278.

    PubMed  CAS  Google Scholar 

  124. Li, J.L., Tracy, J.W., and Christensen, B.M., 1989, Hemocyte monophenol oxidase activity in mosquitoes exposed to microfilariae of Dirofilaria immitis, J. Parasit. 75:1–5.

    PubMed  CAS  Google Scholar 

  125. Lok, J.B., Cupp, E.W., Bernardo, R.J., and Pollack, R.J., 1983, Further studies on the development of Onchocerca spp. (Nematoda: Filarioidea) in Nearctic blackflies (Diptera: Simuliidae), Am. J. Trop. Med. Hyg. 32:1298–1305.

    PubMed  CAS  Google Scholar 

  126. Lok, J.B., Cupp, E.W., Braide, E.I., and Bernardo, M.J., 1980, The development of Onchocerca spp. in Simulium decorum Walker and Simulium pictipes Hagen, Tropenmed. Parasit. 31:498–506.

    CAS  Google Scholar 

  127. McCall, P.J., Trees, A.J., 1989, The development of Onchocerca ochengi in surrogate temperate Simuliidae, with a note on the infective larva, Trop. Med. Parasit. 40:295–298.

    CAS  Google Scholar 

  128. MacDonald, W.W., 1962a, The selection of a strain of Aedes aegypti susceptible to infection with semiperiodic Brugia malayi, Ann. Trop. Med. Parasit. 56:368–372.

    Google Scholar 

  129. MacDonald, W.W., 1962b, The genetic basis of susceptibility to infection with semi-periodic Brugia malayi in Aedes aegypti, Ann. Trop. Med. Parasit. 56:373–382.

    Google Scholar 

  130. MacDonald, W.W., 1963, A preliminary cross-over value between the gene fm (filaria susceptibility, Brugia malayi) and the sex locus in Aedes aegypti, Ann. Trop. Med. Parasit. 57:461–465.

    PubMed  CAS  Google Scholar 

  131. MacDonald, W.W., 1976, Mosquito genetics in relation to filarial infections, (Taylor, A.E.R., and Muller, R.L. (eds): in Genetic Aspects of Host-Parasite Relationships, Symp. Brit. Soc. Parasit. 14:74–87.

    Google Scholar 

  132. MacDonald, W.W., and Sheppard, P.M., 1965, Cross-over values in the sex chromosome of the mosquito Aedes aegypti and evidence of the presence of inversions, Ann. Trop. Med. Parasit. 59:74–87.

    PubMed  CAS  Google Scholar 

  133. McGreevy, P.B., Bryan, J.H., Oothuman, P., and Kolstrup, N., 1978, The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae, Trans. Roy. Soc. Trop. Med. Hyg. 72:361–368.

    PubMed  CAS  Google Scholar 

  134. McGreevy, P.B., McClelland, G.A.H., and Lavoipierre, M.M.J., 1974, Inheritance of susceptibility to Dirofilaria immitis infection in Aedes aegypti, Ann. Trop. Med. Parasit. 68:97–109.

    PubMed  CAS  Google Scholar 

  135. Manson-Bahr, P.H., 1921, Mansons Tropical Diseases 7th Ed. London.

    Google Scholar 

  136. Maudlin, I., and Ellis, D.S., 1985, Association between intracellular rickettsia-like infections of midgut cells and susceptibility to trypanosome infections in Glossina spp., Z. Parasit. 71: 683–687.

    CAS  Google Scholar 

  137. Maudlin, I., and Welburn, S.C., 1987, Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans, Trop. Med. Parasit. 38:167–170.

    CAS  Google Scholar 

  138. Maudlin, L., and Welburn, S.C., 1988, The role of lectins and trypanosome genotype in the maturation of mid-gut infections in Glossina morsitans, Trop. Med. Parasit. 39:56–58.

    CAS  Google Scholar 

  139. Meis, J.F.G.M., Pool, G., Gemert, G.J. van., Lensen, A.H.W., Ponnudurai, T., and Meuissen, J.H.E.T., 1989, Plasmodium falciparum ookinetes migrate inter-cellularly through Anopheles stephensi midgut epithelium, Parasit. Res. 76:13–19.

    CAS  Google Scholar 

  140. Mellor, P.S., 1971, Studies on Onchocerca cervicalis (Railliet and Henry 1910) and its development in Culicoides, Latrielle, Ph.D. Thesis, University of London, England.

    Google Scholar 

  141. Moloo, S.K., and Kutuza, S.B., 1988, Comparative study on the infection rates of different laboratory strains of Glossina species by Trypanosoma congolense, Med. Vet. Entomol. 2:253–257.

    PubMed  CAS  Google Scholar 

  142. Molyneux, D.H., and Killick-Kendrick, R., 1987, Morphology, ultrastructure and life-cycles, in Peters, W; and Killick-Kendrick, R. (eds): The Leishmaniases in Biology and Medicine Academic, Press pp. 121–176.

    Google Scholar 

  143. Molyneux, D.H., Takle, G., Ibrahim, E.A., and Ingram, G.A., 1986, Insect immunity to Trypanosomatidae, Symp. zool. Soc. London, 56:117–144.

    Google Scholar 

  144. Nappi, A.J., and Christensen, B.M., 1986, Haemocyte cell surface changes in Aedes aegypti in response to microfilariae of Dirofilaria immitis, J. Parasit. 72:875–879.

    PubMed  CAS  Google Scholar 

  145. Nappi, A.J., and Silvers, M., 1984, Cell surface changes associated with cellular immune reactions in Drosophila, Science 225:1166–1168.

    CAS  Google Scholar 

  146. Nayar, J.C., Knight, J.W., and Vickery, A.C., 1989, Intracellular melanization in the mosquito Anopheles quadrimaculatus (Diptera: Culicidae) against the filarial nematode Brugia spp. (Nematoda: Filarioidea), J. Med. Ent. 26:159–166.

    CAS  Google Scholar 

  147. Nelson, G.S., 1964, Factors influencing the development and behaviour of filarial nematodes in their arthropodan hosts, in Taylor, A.E.R. (ed): Host-parasite Relationships in Invertebrate Hosts, 2nd Symp. Brit. Soc. Parasit. p. 75.

    Google Scholar 

  148. Nelson, G.S., and Pester, F.R.N., 1962, The identification of infective filarial larvae in Simuliidae, Bull. Wld. Hlth. Org. 27:473–481.

    CAS  Google Scholar 

  149. O’Brochta, D.A., 1990, Genetic transformation and its potential in insect pest control, Bull. Ent. Res. 80:241–244.

    Google Scholar 

  150. Okada, M., and Natori, S., 1983, Purification and characterisation of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh fly) larvae, Biochem. J. 211:727–734.

    PubMed  CAS  Google Scholar 

  151. Olafsen, J.A., 1986, Invertebrate lectins: Biochemical heterogeneity as a possible key to their biological function, in Brehelin, M. (ed): Immunity in invertebrates. Springer, Berlin, pp. 94–111.

    Google Scholar 

  152. Omar, M.S., and Garms, R., 1975, The fate and migration of a guatemalan strain of Onchocerca volvulus in Simulium ochraceum and S. metallicum and the role of the buccopharyngeal armature in the destruction of microfilariae, Tropenmed. Parasit. 26:183–190.

    CAS  Google Scholar 

  153. Owen, R.R., 1977, Differences in the migration patterns of Brugia pahangi microfilariae in susceptible and refractory members of the Aedes scutellaris complex, Trans. Roy. Soc. Trop. Med. Hyg. 71:110–111.

    Google Scholar 

  154. Owen, R.R., 1978, The exsheathment and migration of Brugia pahangi microfilariae in mosquitoes of the Aedes scutellaris species complex, Ann. Trop. Med. Parasit. 72:567–571.

    PubMed  CAS  Google Scholar 

  155. Pereira, M.E.A., Andrade, A.F.B., and Ribeiro, J.M.C., 1981, Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi., Science 211:597–600.

    PubMed  CAS  Google Scholar 

  156. Perone, J.B., and Spielman, A., 1986, Microfilarial perforation of the midgut of a mosquito, J. Parasit. 72:723–727.

    Google Scholar 

  157. Phiri, J., and Ham, P.J., 1990, Enhanced migration of Brugia pahangi microfilariae through the mosquito mid-gut following N-acetyl-D-glucosamine ingestion, Trans. Roy. Soc. Trop. Med. Hyg. 84:462.

    Google Scholar 

  158. Poinar, G.O., and Leutenegger, R., 1971, Ultrastructural investigation of the melanization process in Culex pipiens (Culicidae) in response to a nematode, J. Ultrastr. Res. 36:149–158.

    Google Scholar 

  159. Poinar, G.O., 1974, Insect immunity to parasitic nematodes, in Cooper, E.L. (ed): Contemporary Topics in Immunobiology: Invertebrate Immunity pp. 167–178.

    Google Scholar 

  160. Prod’hon, J., and Bain, O., 1972, Developpement larvaire chez Anopheles stephensi d’Oswaldofilaria bacillaris, filaire de Caiman sud-americain, et redescription des adultes, Ann. Parasit. Paris, 47:745–758.

    Google Scholar 

  161. Ratcliffe, N.A., and Gagen, S.J., 1977, Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella, Tissue and Cell 9:73–85.

    PubMed  CAS  Google Scholar 

  162. Ratcliffe, N.A., Leonard, C., and Rowley, A.F., 1984, Prophenoloxidase activation: Non-self recognision and cell cooperation in insect immunity, Sci. 226: 557–559.

    CAS  Google Scholar 

  163. Ratcliffe, N.A., and Rowley, A.F., 1979, Role of hemocytes in defense against biological agents, in Gupta, A.P. (ed): Insect Hemocytes: Development, forms, functions and techniques, Cambridge University Press, England, pp. 331–414.

    Google Scholar 

  164. Reid, G.D.F., 1978, Cibarial armature of Simulium vectors of onchocerciasis, Trans. Roy. Soc. Trop. Med. Hyg. 72:438.

    Google Scholar 

  165. Reid, G.D.F., 1979, The development of Onchocerca volvulus in two temperate blackfly species, Simulium ornatum Meigen and S. Iineatum Meigen, Ann. Trop. Med. Parasit. 73:577–581.

    PubMed  CAS  Google Scholar 

  166. Rao, U.R., Chandrashekar, R., Parab, P.B., Rajasekariah, G.R., and Subramanyam, D., 1987, Lectin binding characteristics of Wuchereria bancrofti microfilariae, Acta Trop. 44:35–42.

    PubMed  CAS  Google Scholar 

  167. Rao, U.R., Chandrashekar, R., Rajasekariah, G.R., and Subramanyam, D., 1987b, Wheat Germ agglutinin specifically binds to the surface of infective larvae of Wuchereria bancrofti, J. Parasit. 73:1256–1257.

    CAS  Google Scholar 

  168. Reid, G.D.F., 1978, Cibarial armature of Simulium vectors of onchocerciasis, Trans. Roy. Soc. Trop. Med. Hyg. 72:438.

    Google Scholar 

  169. Renwrantz, L.R., and Mohr, W., 1978, Opsonizing effects of serum and albumin gland extracts on the elimination of human erythrocytes from the circulation of Helix pomatia, J. Invert. Pathol. 31:164–170.

    CAS  Google Scholar 

  170. Richards, A.G., and Richards, P.A., 1977, The peritrophic membrane of insects, Ann. Rev. Entomol. 22:219–240.

    Google Scholar 

  171. Rosenberg, R., Koontz, L.C., Alston, K., and Friedman, F.K., 1984, Plasmodium gallinaceum: erythrocyte factor essential for zygote infection of Aedes aegypti, Exp. Parasit. 57:158–164.

    PubMed  CAS  Google Scholar 

  172. Rowley, A.F., Ratcliffe, N.A., Leonard, CM., Richard, E.H., and Renwrantz, L., 1986, Humoral recognition factors in insects, with particular reference to agglutinins and the prophenoloxidase system, in Gupta, A.P. (ed): Hemocytic and Humoral Immunity in Arthropods, John Wiley and Sons, New York, pp. 381–406.

    Google Scholar 

  173. Rudin, W., and Hecker, H., 1989, Lectin binding sites in the midgut of the mosquitoes Anopheles stephensi and Aedes aegypti L. (Diptera: Culicidae), Parasit. Res. 75:268–279.

    CAS  Google Scholar 

  174. Sacks, D.L., and Perkins, P.V., 1985, Development of infective stage Leishmania promastigotes within phlebotomine sandflies, Am. J. Trop. Med. Hyg. 34:456–459.

    PubMed  CAS  Google Scholar 

  175. Salt, G., 1956, Experimental studies in insect parasitism, IX. The reactions of a stick insect to an alien parasite, Proc. Roy. Soc. London, B146:93–108.

    Google Scholar 

  176. Salt, G., 1963, The defence reactions of insects to metazoan parasites, Parasit. 53:527–642.

    CAS  Google Scholar 

  177. Sauerman, D. M., and Nayar, J.K., 1985, Characterization of refractoriness in Aedes aegypti (Diptera: Culicidae) to infection by Dirofilaria immitis, J. Med. Ent. 22:94–101.

    Google Scholar 

  178. Scalzo-Lichtfouse, B., Townson, H., and Ham, P.J., 1990, Humoral and cellular responses of Anopheles stephensi to infection with Plasmodium yoelii, Trans. Roy. Soc. Trop. Med. Hyg. 84:463.

    Google Scholar 

  179. Schlein, Y., and Romano, H., 1986, Leishmania major and L. donovani: effects on proteolytic enzymes of Phlebotomous papatasi (Diptera, Psychodidae), Exp. Parasit. 62:376–380.

    PubMed  CAS  Google Scholar 

  180. Schlein, Y., Warburg, A., Schnur, L.F., and Shlomai, J., 1983, Vector compatability of Phlebotomus papatasi dependent on differentially induced digestion, Acta Trop. 40:65–70.

    PubMed  CAS  Google Scholar 

  181. Schottelius, J., and da Costa, S.C.G., 1982, Studies on the relationship between lectin binding carbohydrates and different strains of Leishmania from the New World, Mem. Inst. Oswaldo Cruz. 77:19–27.

    PubMed  CAS  Google Scholar 

  182. Schraermeyer, U., Peters, W., and Zehner, H., 1987, Lectin binding studies on adult filaria, intrauterine developing stages and microfilariae of Brugia malayi and Litomosoides carinii, Parasit. Res. 73:550–556.

    CAS  Google Scholar 

  183. Sinden, R.E., 1984, The biology of Plasmosium in the mosquito. Experientia 40:1330–1343.

    PubMed  CAS  Google Scholar 

  184. Smail, A.J., and Ham, P.J., 1989, Onchocerca induced haemolymph lectins in blackflies: Confirmation by sugar inhibition of erythrocyte agglutination, Trop. Med. Parasit. 39:82–83.

    Google Scholar 

  185. Sneller, V., 1979, Inhibition of Dirofilaria immitis in gregarine-infected Aedes aegypti: preliminary observations, J. Invert. Pathol. 34:62–70.

    CAS  Google Scholar 

  186. Soderhall, K., and Smith, V.J., 1986, Prophenoloxidase-activating cascade as a recognision and defense system in arthropods, in Gupta, A.P. (ed): Hemocytic and Humoral Immunity in Arthropods, John Wiley and Sons, New York, pp. 251–285.

    Google Scholar 

  187. Stephens, J.M., 1962, Bacteriocidal activity of the blood of actively immunized wax moth larvae, Can. J. Microbiol. 8:491–499.

    Google Scholar 

  188. Stiles, B., Bradley, R.S., Stuart, G.S., and Hapner, K.D., 1988, Site of synthesis of the haemolymph agglutinin of Melanoplus differentialis (Acrididae: Orthoptera), J. Ins. Physiol. 34:1077–1085.

    CAS  Google Scholar 

  189. Stiles, J.K., Ingram, G.A., Wallbanks, K.R., Molyneux, D.H., Maudlin, I., and Welburn, S., 1990, Identification of midgut trypanolysin and trypanoagglutinin in Glossina palpalis sspp. (Diptera: Glossinidae), Parasit. 101:369–376.

    CAS  Google Scholar 

  190. Stoffolano, J.G., 1986, Nematode induced host responses, in Gupta, A.P. (ed): Hemocytic and Humoral Immunity in Arthropods. John Wiley and Sons, New York, pp. 117–155.

    Google Scholar 

  191. Sulaiman, I., and Townson, H., 1980, The genetic basis of susceptibility to infection with Dirofilaria immitis in Aedes aegypti, Ann. Trop. Med. Parasit. 74:635–646.

    PubMed  CAS  Google Scholar 

  192. Sun, S.-C., Lindstrom, I., Boman, H.G., Faye, I., and Schmidt, O., 1990, Hemolin: An insect immune protein belonging to the immunoglobulin superfamily, Science 250:1729–1732.

    PubMed  CAS  Google Scholar 

  193. Sutherland, D.R., Christensen, B.M., and Forton, K.F., 1984, Defense reactions of mosquitoes to filarial worms: role of the microfilarial sheath in the response of mosquitoes to inoculated Brugia pahangi microfilariae, J. Invert. Path. 44:275–281.

    CAS  Google Scholar 

  194. Taylor, D.W., Goddard, J.M., and McMahon, J.E., 1986, Surface components of Onchocerca lienalis, Mol. Biochem. Parasit. 18:283–300.

    CAS  Google Scholar 

  195. Thomas, P.M., and Ham, P.J., 1993, Acquired immunity in Simulium following superinfection with Onchocerca, Trop. Med. Parasit, (in press)

    Google Scholar 

  196. Townson, H., and Chaithong, U., 1991, Mosquito host influences on development of filariae, Ann. Trop. Med. Parasit. 85:149–163.

    PubMed  CAS  Google Scholar 

  197. Vaughan, J.A., and Azad, A.F., 1988, Passage of host immunoglobulin G from blood meal into hemolymph of selected mosquito species (Diptera: Culicidae), J. Med. Ent. 25:472–474.

    CAS  Google Scholar 

  198. Voelker, J., and Garms, R., 1972, Zur morphologie unbekannter filarienlarven aus dem Onchocercose-Ubertrager Simulium damnosum und aus S. kenyae in Liberia und zur frage der moglichen enwirte, Z. Tropenmed. Parasit. 23:285–301.

    CAS  Google Scholar 

  199. Walters, L.L., Modi, G.B., Tesh, R.B., and Burrage, T., 1987, Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae), Am. J. Trop. Med. Hyg. 36:294–314.

    PubMed  CAS  Google Scholar 

  200. Warburg, A., and Miller, L.H., 1991, Critical stages in the development of Plasmodium in mosquitoes, Parasit. Today 7:179–181.

    CAS  Google Scholar 

  201. Warburg, A., Tesh, R.B., and McMahon-Pratt, D., 1989, Studies on the attachment of Leishmania flagella to sandfly midgut epithelium, J. Protozool. 36:613–617.

    PubMed  CAS  Google Scholar 

  202. Weathersby, A.B., 1962, Parabiotic twinning of mosquitoes, Mosq. News, 25:44–45.

    Google Scholar 

  203. Weathersby, A.B., and McCall, J.W., 1968, The development of Plasmodium gallinaceum Brumpt in haemocoels of refractory Culex pipiens pipiens Linn, and susceptible Aedes aegypti Linn, J. Parasit. 54:1017–1022.

    PubMed  CAS  Google Scholar 

  204. Weathersby, A.B., and McCrodden, D.M., 1982, The effects of parabiotic twinning of susceptible and refractory mosquitoes on the development of Plasmodium gallinaceum, J. Parasit. 68:1081–1084.

    PubMed  CAS  Google Scholar 

  205. Welburn, S.C., Ellis, D.S., and Maudlin, I., 1989, Rate of trypanosome killing in midguts of different species and strains of Glossina, Med. Vet. Entomol. 3:77–82.

    PubMed  CAS  Google Scholar 

  206. Welburn, S.C., and Maudlin, I., 1990, Haemolymph lectin and the maturation of trypanosome infections in tsetse, Med. Vet. Entomol. 4:43–48.

    PubMed  CAS  Google Scholar 

  207. Wing, S.R., Young, M.D., Mitchell, S.E., and Seawright, J.A., 1985, Comparative susceptibilities of Anopheles quadrimaculatus mutants to Plasmodium yoelii, J. Am. Mosq. Contr. Assoc. 1:511–513.

    CAS  Google Scholar 

  208. Yamamoto, H., Kobayashi, N., Ogura, N., Tsuruoka, H., and Chigusa, Y., 1985, Studies on filariasis VI: The encapsulation of Brugia malayi and B. pahangi larvae in the mosquito, Armigeries subalbatus, Jap. J. Sank. Zool. 36:1–6.

    Google Scholar 

  209. Yamamoto, H., Ogura, N., Kobayashi, M., and Chigusa, Y., 1983, Studies on filariasis 11: Exsheathment of the microfilariae of Brugia pahangi in Armigeres subalbatus, Jap. J. Parasit. 32:287–292.

    Google Scholar 

  210. Yoeli, M., 1973, Plasmodium berghei: Mechanisms and sites of resistance to sporogonic development in different mosquitoes, Exp. Parasit. 34:448–458.

    PubMed  CAS  Google Scholar 

  211. Zahedi, M., Denham, D.A., and Ham, P.J., 1990, Surface lectin binding characteristics of developing stages of Brugia in Armigeres subalbatus: I Brugia pahangi, Japan. J. Trop. Med. Hyg. 18:271–283.

    Google Scholar 

  212. Zielke, E., 1977, Further studies on the development of Onchocerca volvulus in mosquitoes, Trans. Roy. Soc. Trop. Med. Hyg. 71:546–547.

    PubMed  CAS  Google Scholar 

  213. Zielke, E., Schulz-Key, H., and Albiez, E.J., 1977, On the development of Onchocerca volvulus in mosquitoes, Tropenmed. Parasit. 28:254–257.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ham, P.J. (1992). Immunity in Haematophagous Insect Vectors of Parasitic Infection. In: Harris, K.F. (eds) Advances in Disease Vector Research. Advances in Disease Vector Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2910-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2910-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7716-3

  • Online ISBN: 978-1-4612-2910-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics