Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 125))

Abstract

Earthworms are probably the most important members of the soil biota. Although they are not numerically dominant in soils, their large size makes them one of the major contributors to total biomass, and their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. Aristotle was the first to draw attention to their role in turning over the soil and he aptly called them “the intestines of the earth.” However, it was not until the late 1800s that Charles Darwin (1881), in his definitive work, “The Formation of Vegetable Mould Through the Action of Worms,” defined the extreme importance of earthworms in breakdown of dead plant and animal matter that reaches soil and in the continued maintenance of soil structure, aeration, drainage, and fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbasi SA, Soni R (1983) Stress-induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium (VI) and mercury ( II)-implications in environmental management. Int J Environ Stud 22: 43–47.

    CAS  Google Scholar 

  • Agarwal HC, Yadav DV, Pillai MKK (1978) Metabolism of 14C-DDT in Pheretima posthuma and effect of pretreatment with DDT, Lindane, and Dieldrin. Bull Environ Contam Toxicol 19: 295–299.

    PubMed  CAS  Google Scholar 

  • Anton F, Laborda E, Laborda P (1990) Acute toxicity of the fungicide captan to the earthworm Eisenia foetida (Savigny). Bull Environ Contam Toxicol 45: 82–87.

    PubMed  CAS  Google Scholar 

  • Ash CPJ, Lee DL (1980) Lead, cadmium, copper, and iron in earthworms from roadside sites. Environ Pollut Ser A 22: 59–67.

    CAS  Google Scholar 

  • Aspock H, Van der Lan H (1963) Ökologische Auswirkungen und Physiologische Besonderheiten des Pflanzenschutzmittels Sevin (1-Naphthyl-N-methylcarbamate). Z Angew Zool 50: 343–380.

    Google Scholar 

  • Atlavinyte O (1975) Effect of chemical substances on the activity of Lumbricidae in the process of straw disintegration. In: Vanek J (ed) Progress in Soil Zoology. Dr. W Junk, BV, Amsterdam, The Netherlands, pp 515–519.

    Google Scholar 

  • Atlavinyte O (1981) The effect of pesticides on the abundance of mites and Collembola during the process of decomposition of organic substances. In: Semyanov VP (ed) Noveishie Dostizheniya Sel Skokhozyaistvennoi Entomologii Publ Po Materialam Ush Sezda Veo Vilnnius, USSR, pp 9–13.

    Google Scholar 

  • Atlavinyte O, Daciulyte J, Lugauskas A (1974) The effect of herbicides and insecticides on populations and activities of soil organisms. Dinamika Mikrobiologicheskikh Protesessov v Pochve Obuslovlivayushchie Ee Faktory. Materialy Simpoziuma, Kharkov 1974, Publ, Akademiya Nauk Estonskoi SSR, Tallin, USSR, pp 137–140.

    Google Scholar 

  • Atlavinyte O, Daciulyte J, Lugauskas A (1977) The effect of Lumbricidae on plant humification and soil organism biocenoses under application of pesticides. Ecol Bull 25: 222–228.

    CAS  Google Scholar 

  • Atlavinyte O, Daciulyte J, Lugauskas A (1978) The influence of TCA on soil organisms and the accumulation of vitamin B12 in soil. Microbiologicheskie Protessov v Pochve I Urozhainost Sel Skokhozyaistvennoi Kultur. Materialy K Respublikanskoi Konferentsii, Vilnius 1973, Akademiya Nauk Lithuanskoi, Vilnius, USSR, pp 30–31.

    Google Scholar 

  • Atlavinyte O, Galvelis A, Daciulyte J, Lugauskas A (1982) Effects of entobacterin on earthworm activity. Pedobiologia 23: 372–379.

    Google Scholar 

  • Atlavinyte O, Lugauskas A, Kilikevicius G (1980) Accumulation of organophosphorus insecticides in earthworms and reactions of earthworms and micro-organisms to these substances. In: Dindal DL (ed) Soil Biology as Related to Land Use Practices. Proceedings of the VII International Soil Zoology Colloquium Pub. Office of Pesticide and Toxic Substances, U.S. Environmental Protection Agency, Washington, DC, pp 13–24.

    Google Scholar 

  • Baker WL (1946) DDT and earthworms populations. J Econ Entomol 39: 404–405.

    CAS  Google Scholar 

  • Barker GM (1982) Short-term effects of methiocarb formulations on pasture earthworms (Oligochaeta:Lumbricidae). NZ J Exp Agric 10: 309–311.

    Google Scholar 

  • Barker RJ (1958) Notes on some ecological effects of DDT sprayed on elms. J Wild Mgt 22: 269–274.

    Google Scholar 

  • Bauer K (1964) Studien uber Nebenwirkungen von Pflantzenschutz auf die Bodenfauna. Mitt Biol Bund Landwirt Forstwirt Berlin-Dahlem 112: 1–42.

    Google Scholar 

  • Bengtsson G, Nordstrom S, Rundgren S (1983) Population density and tissue metal concentration of lumbricids in forest soils near a brass mill. Environ Pollut Ser A 30: 87–108.

    CAS  Google Scholar 

  • Bengtsson G, Gunnarsson T, Rundgren S (1986) Effects of metal pollution on the earthworm Dendrobaena rubida ( Say) in acidified soils. Water Air Soil Pollut 28: 361–383.

    CAS  Google Scholar 

  • Benz G, Altwegg A (1975) Safety of Bacillus thuringiensis for earthworms. J Invert Pathol 26: 125–126.

    CAS  Google Scholar 

  • Berankova J (1978) Laboratory tests investigating the effect of pesticides and commercial fertilizers on the soil fauna. Ochr Rosl 14: 305–312.

    Google Scholar 

  • Beyer WN (1981) Metals and terrestrial earthworms (Annelida: Oligochaeta). In: Applehof M (ed) Proceedings of the Workshop on the Role of Earthworms on the Stabilisation of Organic Residues 1. Beech Leaf Press, Kalamazoo, Michigan, p 137–150.

    Google Scholar 

  • Beyer WN, Chaney RL, Muihern BM (1982) Heavy metal concentrations in earth- worms from soil amended with sewage sludge. J Environ Qual 11: 381–385.

    CAS  Google Scholar 

  • Beyer WN, Gish CD (1980) Persistence in earthworms and potential hazards to birds of soil-applied DDT, dieldrin and heptachlor. J Appl Ecol 17: 295–307.

    CAS  Google Scholar 

  • Beyer WN, Hensler G, Moore J (1987) Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms. Pedobiologia 30: 167–172.

    CAS  Google Scholar 

  • Black WM, Neely D (1975a) Effect of soil injected benomyl on resident earthworm populations. Pestic Sci 6: 543–545.

    CAS  Google Scholar 

  • Black WM, Neely D (1975b) Dutch elm disease control with soil injected benomyl, effect on resident earthworm populations. Proc Am Phytopath Soc 2: 82.

    Google Scholar 

  • Blackshaw RP (1980) The effect of benzimidazole fungicides on the ecology of soil fauna in winter wheat. Ph.D. Thesis University of Newcastle upon Tyne.

    Google Scholar 

  • Blankwaardt HFH, van der Drift J (1961) The influence of soil sterilisation on earthworms in a heated greenhouse. Meded Dir Tuinbouw 24: 490–496.

    Google Scholar 

  • Bouché MB (1972) Lombriciens de France. Ecologie et Sytematique. Inst Nat Rech Agron.

    Google Scholar 

  • Bouché MB (1974) Pesticides et lombriciens: problems methodologiques et economiques. Phytiat Phytopharm 23: 107–116.

    Google Scholar 

  • Bouché MB (1984) Ecotoxicologie des lombriciens II. Surveillance de la contamination des milieux. Acta Oecol 5: 291–301.

    Google Scholar 

  • Bouché MB (1988) Earthworm toxicological tests, danger assessment and biomonitoring: a methodological approach. In: Edwards CA and Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 315–320.

    Google Scholar 

  • Bouché MB, Beugnot M (1978) Action du chlorate de sodium sur le niveau des populations et l’activite biodegradatrice des lombriciens. Phytiat Phytopharm 27: 147–162.

    Google Scholar 

  • Bouwman H, Reinecke AJ (1987) Effects of carbofuran on the earthworm, Eisenia fetida using a defined medium. Bull Environ Contam Toxicol 38: 171–178.

    PubMed  CAS  Google Scholar 

  • Bracher GA, Bider JR (1982) Changes in terrestrial animal activity of a forest community after an application of amniocarb. Can J Zool 60: 1981–1997.

    CAS  Google Scholar 

  • Brande J van den, Heungens A (1969) Influence of repeated applications of nematicides on the soil fauna in begonia culture. Neth J Plant Pathol 75: 40–44.

    Google Scholar 

  • Broadbent AB, Tomlin AD (1982) Comparison of two methods for assessing the effects of carbofuran on soil animal decomposers in cornfields. Environ Entomol 11: 1036–1042.

    Google Scholar 

  • Brown AWA (1978) Ecology of Pesticides. John Wiley and Sons, New York.

    Google Scholar 

  • Buahin GKA, Edwards CA (1963) The side effects of toxic chemicals in the soil on arthropods and worms. Rep Rothamsted Exp Sta 1962, pp 156–157.

    Google Scholar 

  • Bull KR, Roberts RD, Inskip MJ, Goodman GT (1977) Mercury concentrations on soil, grass, earthworms and small mammals near an industrial emission source. Environ Pollut Ser A 12: 135–140.

    Google Scholar 

  • Callahan CA (1988) Earthworms as ecotoxicological assessment tools. In: Edwards CA, Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 295–301.

    Google Scholar 

  • Caseley JC, Eno CF (1966) Survival and reproduction of two species of earthworm and a rotifer following herbicide treatments. Proc Soil Sci Soc Am 30: 346–350.

    Google Scholar 

  • Cathey B (1982) Comparative toxicities of five insecticides to the earthworm, Lumbricus terrestris. Agric Environ 7: 73–81.

    CAS  Google Scholar 

  • Chio H, Sanborn JR (1976) The metabolism of 14C-chlordane by the earthworm, Lumbricus terrestris L. Chemosphere 3: 161–166.

    Google Scholar 

  • Chio H, Sanborn JR (1978) The metabolism of atrazine, chioramben and dicamba in earthworms (Lumbricus terrestris) from treated and untreated plots. Weed Sci 26: 331–335.

    CAS  Google Scholar 

  • Clements RO, Henderson IF, Bentley BR (1982) The effects of pesticide application on upland permanent pasture. Grass Forage Sci 37: 123–128.

    Google Scholar 

  • Cook AG, Critchley BR, Critchley U, Perfect TJ, Yeadon R (1980) Effects of cultivation and DDT on earthworm activity in a forest soil in the sub-humid tropics. J Appl Ecol 17: 21–29.

    CAS  Google Scholar 

  • Cook ME, Swait AAJ (1975) Effects of some fungicide treatments on earthworm populations and leaf removal in apple orchards. J Hortic Sci 50: 495–499.

    CAS  Google Scholar 

  • Cramp S, Conder PI (1965) 5th Rept Brit Trust Ornith and Roy Soc Prot Birds on Toxic Chemicals.

    Google Scholar 

  • Crossley DA, Jr, Reichle DE, Edwards CA (1971) Intake and turnover of radioactive cesium by earthworms (Lumbricidae). Pedobiolgia 11: 71–76.

    Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms, with observation of their habits. Murray, London.

    Google Scholar 

  • Davey SP (1963) Effects of chemicals on earthworms: a review of the literature. U.S. Dept. Interior Special Scientific Report. Wildlife No 74, Washington, DC.

    Google Scholar 

  • Davis BNK (1966) Soil animals as vectors of organochlorine insecticides for ground feeding birds. J Appl Ecol (Suppl) 3: 133–139.

    Google Scholar 

  • Davis BNK (1968) The soil macrofauna and organochlorine residues at twelve agricultural sites near Huntingdon. Ann Appl Biol 61: 29–45.

    CAS  Google Scholar 

  • Davis BNK (1971) Laboratory studies on the uptake of dieldrin and DDT by earthworms. Soil Biol Biochem 1: 221–233.

    Google Scholar 

  • Davis, BNK, French MC (1969) The accumulation and loss of organochlorine insecticide residues by beetles, worms and slugs in sprayed fields. Soil Biol Biochem 1: 44–55.

    Google Scholar 

  • Davis BNK, Harrison RB (1966) Organochlorine insecticide residues in soil invertebrates. Nature London, 211: 1424–1425.

    PubMed  CAS  Google Scholar 

  • Dawson RB, Boyns BM, Shorrock RW (1938) The use of derris in the control of earthworms. J Sports Turf Res Inst 5: 249–257.

    CAS  Google Scholar 

  • Dean-Ross D (1983) Methods for the assessment of the toxicity of environmental chemicals to earthworms. Regul Toxicol Pharmacol 3: 48–59.

    PubMed  CAS  Google Scholar 

  • Dikshith TSS, Gupta SK (1981) Carbaryl induced biochemical changes in the earthworm Pheretima posthuma. Ind J Biochem Biophys 18: 154.

    Google Scholar 

  • Dimond JB, Belyea GY, Kadunce RE, Getchell SA, Blease JA (1970) DDT residues in robins and earthworms associated with contaminated forest soils. Can Entomol 102: 1122–1130.

    CAS  Google Scholar 

  • Dindal, DL, Newell LT, Moreau JP (1979) Municipal wastewater irrigation: effects on community ecology of soil invertebrates. In: Sopper WE, Kerr SN (eds) Utilization of Municipal Sewage Effluent and Sludge on Forest and Disturbed Land. Penn State Univ Press, University Park, PA, pp 197–205.

    Google Scholar 

  • Dindal, DL (1985) Soil animals and soil fabric production: facts and perceptions. Quaest Entomol 12: 587–594.

    Google Scholar 

  • Doane CC (1962) Effects of certain insecticides on earthworms. J Econ Entomol 55: 416–418.

    Google Scholar 

  • Drandarevski CA, Eichler D. Domsch KH (1977) Behaviour of trifluorine in soil and its influence on microbiological soil processes. Z Pflanzenkrank Pflanzenschutz 84: 18–30.

    CAS  Google Scholar 

  • Drewes CD, Callahan CA (1988) Electrophysiological detection of sublethal neurotoxic effects in intact earthworms. In: Edwards CA and Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 355–366.

    Google Scholar 

  • Drewes CD, Zoran MJ, Callahan CA (1987) Sublethal neurotoxic effects of the fungicide benomyl on earthworms (Eisenia fetida). Pestic Sci 19: 197–208.

    CAS  Google Scholar 

  • Drift J van der (1963) De invloed van biociden op de bodenfauna. Neth J Plant Pathol 69: 188–199.

    Google Scholar 

  • Dustman EH, Stickel LF (1966) Pesticide residues in the ecosystem. In: Pesticides and their effects on soils and water, Am Soc Agron Spec Publ 8: 109–121.

    Google Scholar 

  • Dutt K (1990) Breeding of Lumbricus terrestris for soil inoculation. PhD thesis Open University, UK.

    Google Scholar 

  • Ebing KW, Hague A (1979) Summarizing report on previous studies concerning earthworms to test the ecological effects of organic chemicals on soil organisms. 3rd Meeting OECD Expert Group C ‘Degradation/Accumulation’, Tokyo.

    Google Scholar 

  • Edwards CA (1965a) Some side-effects resulting from the use of persistent insecticides. Ann Appl Biol 55: 329–331.

    Google Scholar 

  • Edwards CA (1965b) Effects of pesticide residues on soil invertebrates and plants. In: Ecology and the industrial society, 5th Symp Brit Ecol Soc, pp 239.

    Google Scholar 

  • Edwards CA (1966) Insecticide Residues in Soils. Residue Rev 13: 83.

    CAS  Google Scholar 

  • Edwards CA (1969) Effects of Gamma Irradiation on Populations of Soil Invertebrates. 2nd Symp Radioecology, USAEC, Oak Ridge, pp 68–77.

    Google Scholar 

  • Edwards CA (1970) Effects of herbicides on the soil fauna. Proc 10th Brit Weed Contr Conf 3: 1052–1062.

    Google Scholar 

  • Edwards CA (ed) (1973a) Environmental Pollution by Pesticides. Plenum Press, New York.

    Google Scholar 

  • Edwards CA (1973b) Persistent Pesticides in the Environment, 2nd Ed. CRC Press, Cleveland, OH.

    Google Scholar 

  • Edwards CA (1977) Investigations into the influence of agricultural practice on soil invertebrates. Ann Appl Biol 87: 515–520.

    Google Scholar 

  • Edwards CA (1982) Problems caused by the contamination of agricultural land and woodlands by toxic chemicals. Decheniana Beih 26: 145–150.

    Google Scholar 

  • Edwards CA (1983a) Development of a standardized laboratory method for assessing the toxicity of chemical substances to earthworms. Commission of the European Communities, Brussels, Luxembourg.

    Google Scholar 

  • Edwards CA (1983b) The environmental impact of pesticides: fact and fiction. Med Fac Lanabouww Rijksuniv Gent 48: 149–155.

    CAS  Google Scholar 

  • Edwards CA (1984) Report on the second stage in development of a standardized laboratory method for assessing the toxicity of chemical substances to earthworms. Commission of the European Communities, Brussels, Luxembourg.

    Google Scholar 

  • Edwards CA (1989) Impact of herbicides on soil ecosystems. Crit Rev Plant Sci 8: 221–257.

    CAS  Google Scholar 

  • Edwards CA (1991) Testing the effects of chemicals on earthworms: the advantages and limitations of field tests. Proc Earthworm Toxicol Conf, Sheffield (in press).

    Google Scholar 

  • Edwards CA, Arnold MK (1963) The side-effects of toxic chemicals in the soil on arthropods and worms. Rept Rothamsted Exp Sta Part 1 1962, p 156.

    Google Scholar 

  • Edwards CA, Arnold MK (1964) The side effects of toxic chemicals in the soil on arthropods and earthworms. Rept Rothamsted Exp Sta Part 1 1963, p 147.

    Google Scholar 

  • Edwards CA, Arnold MK (1966) Effects of insecticides on soil fauna. Rep Rothamsted Exp Sta 1965, p 186.

    Google Scholar 

  • Edwards CA, Arnold MK, Thompson AR (1966) Effects of insecticides on soil fauna. Rept Rothamsted Exp Sta 1965, p 187.

    Google Scholar 

  • Edwards CA, Dennis EB (1960) Some effects of aldrin and DDT on the soil fauna of arable land. Nature 188: 767.

    PubMed  CAS  Google Scholar 

  • Edwards CA, Dennis EB, Empson DW (1967) Pesticides and the soil fauna: effects of aldrin and DDT in an arable field. Ann Appl Biol 60: 11–22.

    PubMed  CAS  Google Scholar 

  • Edwards CA, Fisher SW (1991) The use of cholinesterase measurements in assessing the impacts of pesticides on terrestrial and aquatic invertebrates. In: Mineau P (ed) Cholinesterase Inhibiting Insecticides Impacts on Wildlife and the Environment. Elsevier, The Hague, The Netherlands, pp. 255–276.

    Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic matter breakdown. In: Edwards CA, Stinner BR, Stinner D and Rabatin S (eds) Biological interactions in soils. Elsevier Amsterdam, pp 235–249.

    Google Scholar 

  • Edwards CA, Jeffs KA (1965) The persistence of some insecticides in soil and their effects on soil animals Proc 12th Int Congr Entomol, pp 559–560.

    Google Scholar 

  • Edwards CA, Jeffs KA (1973) Uptake of pesticides by earthworms. Rept Rothamsted Exp Sta 1972, Part 1, p 212–213.

    Google Scholar 

  • Edwards CA, Jeffs KA (1974) Rate of uptake of DDT from soil by earthworms. Nature London 247: 157–158.

    CAS  Google Scholar 

  • Edwards CA, Lofty JR (1971) Nematicides and the soil fauna. Proc 6th Brit Insectic Fungic Conf 1: 158–166.

    Google Scholar 

  • Edwards CA, Lofty JR (1973) Pesticides and earthworms. Rept Rothamsted Exp Sta 1972, Part 1, pp 211–212.

    Google Scholar 

  • Edwards CA, Lofty JR (1976) Pesticides and soil fauna. Rept Rothamsted Exp Sta 1975, Part 1, pp 128–129.

    Google Scholar 

  • Edwards CA, Lofty JR (1977) Biology of Earthworms, 2nd edition. Chapman and Hall, London.

    Google Scholar 

  • Edwards CA, Lofty JR (1978) The influence of arthropods and earthworms upon root growth of direct drilled cereals. J Appl Ecol 15: 789–795.

    Google Scholar 

  • Edwards CA, Lofty JR, Stafford CJ (1971a) Pesticides and the soil fauna. Rept Rothamsted Exp Sta 1970, Part 1, p 194.

    Google Scholar 

  • Edwards CA, Lofty JR, Stafford CJ (1972) Pesticides and earthworms. Rept Rothamsted Exp Sta 1971, Part 1, p 211–212.

    Google Scholar 

  • Edwards CA, Lofty JR, Stafford CJ (1974) Soil fauna: pesticides and earthworms. Rept Rothamsted Exp Sta 1973, Part 1, p 204.

    Google Scholar 

  • Edwards CA, Lofty JR, Whiting AE, Jeffs K (197 lb) Pesticides and earthworms. Rept Rothamsted Exp Sta 1970, Part 1, pp 193–194.

    Google Scholar 

  • Edwards CA, Neuhauser EF (eds) (1988) Earthworms in waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands.

    Google Scholar 

  • Edwards CA, Stafford CJ (1976) Effects of a herbicide on the soil fauna. Rept Rothamsted Exp Sta 1975, Part 1, p 129.

    Google Scholar 

  • Edwards CA, Stafford CJ (1978) Interactions between herbicides and the soil fauna. Ann Appl Biol 89: 125–146.

    Google Scholar 

  • Edwards CA, Stafford CJ (1979) Interactions between herbicides and the soil fauna. Ann Appl Biol 91: 132–137.

    CAS  Google Scholar 

  • Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Reviews 45: 1–79.

    PubMed  CAS  Google Scholar 

  • Edwards CA, Thompson AR, Beynon KI (1968a) Some effects of chlorfenvinfos, an organophosphorus insecticide, on populations of soil animals. Rev Ecol Biol Sol 5: 199–224.

    Google Scholar 

  • Edwards PJ, Brown SM (1982) Use of grassland plots to study the effect of pesticides on earthworms. Pedobiologia 24: 145–150.

    CAS  Google Scholar 

  • Eijsackers H (1982) Soil fauna and soil microflora as possible indicators of soil pollution. Environ Mgt Assess 3: 317–319.

    Google Scholar 

  • El-Banhawy MA, El-Ganzuri MA, El-Akkad MM (1986) Morphological changes of the Golgi apparatus of the nerve and intestinal cells of the earthworm Allolobophora caliginosa living on insecticides-contaminated soil. Pak J Zool 18: 1–7.

    Google Scholar 

  • Escritt JR (1955) Calcium arsenate for earthworm control. J Sports Turf Res Inst 9: 28–34.

    Google Scholar 

  • Escritt JR, Arthur JH (1948) Earthworm control: A resume of methods available. J Sports Turf Res Inst 7: 162–172.

    Google Scholar 

  • Evans AC (1947) Earthworms. J Sports Turf Res Inst 7: 49–54.

    Google Scholar 

  • Fanelli R, Bertoni MP, Bonfanti M, Castelli MG, Chiabrando C, Martelli GP, Noe MA, Noseda A, Sbarra C (1980a) Routine analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin in biological samples from the contaminated area of Seveso, Italy. Bull Environ Contam Toxicol 24: 818–823.

    CAS  Google Scholar 

  • Fanelli R, Bertoni MP, Castelli MG, Chiabrando C, Martelli GP, Noseda A, Garattini S, Binaghi C, Marazza V, Pezza F (1980b) 2,3,7,8-Tetrachlorodibenzo-pdioxin toxic effects and tissue levels in animals from the contaminated area of Seveso, Italy. Arch Environ Contam Toxicol 9: 569–577.

    CAS  Google Scholar 

  • Fanelli R, Castelli MG, Martelli GP, Noseda A, Garattini S (1980c) Presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin in wildlife living near Seveso, Italy; a preliminary study. Bull Environ Contam Toxicol 24: 460–462.

    CAS  Google Scholar 

  • Fayolle L (1979) Consequences of the impact of pollutants on earthworms. III: Laboratory tests. Doc Pedozool 1: 34–65.

    CAS  Google Scholar 

  • Finlayson DG, Campbell CJ, Roberts HA (1975) Herbicides and insecticides: their compatibility and effects on weeds, insects and earthworms in the minicauliflower crop. Ann Appl Biol 79: 95–108.

    CAS  Google Scholar 

  • Fisher SW (1984) A comparison of standardised methods for measuring the biological activity of pesticides to the earthworm L. terrestris. Ecotoxicol Environ Saf 8: 564–571.

    PubMed  CAS  Google Scholar 

  • Fisher SW, Metcalf RL (1983) Production of delayed ataxia by carbamate acid esters. Pestic Biochem Physiol 19: 243–253.

    CAS  Google Scholar 

  • Fleckenstein J (1985) Direct measurement of mercury in solid biological samples by Zeeman atomic absorption spectrometry (ZAAS) in the graphite furnace. Z Anal Chem 322: 704–707.

    CAS  Google Scholar 

  • Fleckenstein J, Graff O (1982) Schwermetallaufnahme aus mullkompost durch der regenwurm Eisenia fetida (Savigny 1826). Landbauforsch Voelkenrode 32: 198–202.

    CAS  Google Scholar 

  • Fleming WE, Hadley CH (1945) DDT ineffective for the control of an exotic earthworm. J Econ Entomol 38: 411.

    CAS  Google Scholar 

  • Fleming WE, Hawley IM (1950) A large scale test with DDT to control the Japanese beetle. J Econ Entomol 43: 586.

    CAS  Google Scholar 

  • Flickinger EL, King KA, Stout WF, Mohn MM (1980) Wildlife hazards from Furadan 3G applications to rice in Texas, U.S.A. J Wildl Mgt 44: 190–197.

    CAS  Google Scholar 

  • Fox CJS (1964) The effects of five herbicides on the numbers of certain invertebrate animals in grassland soils. Can J Plant Sci 44: 405–409.

    CAS  Google Scholar 

  • Fox CJS (1974) Effect of a carbamate and three organophosphorus insecticides on the numbers of wireworms, earthworms, springtails and mites in grassland soil. Phytoprotection 55: 103–105.

    CAS  Google Scholar 

  • Balvyalis AG, Lugauskas A (1978) Effect of chlorophos, carbophos, simazine and sodium trichloroacetate on earthworms and microscopic fungi. Liet TSR Mokslu Akad Darb Ser C 2: 17–26.

    Google Scholar 

  • Barrec JP, Plebin R (1964) Accumulation du fluor dans les vers de terre vivant dans des sol contamines. Environ Pollut Ser B 7: 97–105.

    Google Scholar 

  • Gerard BM (1967) Factors affecting earthworms in pastures. J Anim Ecol 36: 235–252.

    Google Scholar 

  • Gestel van CAM, Ma W-C (1988) Toxicity and bioaccumulation of chlorophenols in earthworms in relation to bioavailability in soil. Ecotox Environ Saf 15: 289–297.

    Google Scholar 

  • Gestel van CAM, Ma W-C (1990) An approach to quantitative structure-activity relationships (QSARs) in earthworm toxicity studies. Chemosphere 8: 1023–1033.

    Google Scholar 

  • Gestel van CAM, van Dis WA, van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia foetida andrei using copper, pentachlorophenol and 2,4 dichloraniline. Ecotox Environ Saf 18: 305–312.

    Google Scholar 

  • Ghabbour SI, Imam M (1967) The effect of five herbicides on three oligochaete species. Rev Ecol Biol Sol 4: 119–122.

    Google Scholar 

  • Ghilarov MS, Byzova JB (1961) Vlijanie Chimiceskich obrabotok lesa na pocvennuju jaunu. Lesnoe chozjajstro 10: 58–91.

    Google Scholar 

  • Gilman AP, Vardanis A (1974) Carbofuran. Comparative toxicity and metabolism in the worms L. terrestris and E. foetida. J Agric Food Chem 22: 625–628.

    PubMed  CAS  Google Scholar 

  • Gish CK (1970) Organochlorine insecticide residues in soils and soil invertebrates from agricultural lands. Pestic Monit J 3: 241–252.

    PubMed  CAS  Google Scholar 

  • Gish CK, Hughes DL (1982) Residues of DDT, dieldrin and heptachlor in earthworms during two years following application. Special Scientific Report-Wildlife No 241. Publ, US Dept of Interior. Fish and Wildlife Service, Washington, DC, p 15.

    Google Scholar 

  • Gish CD, Christensen RE (1973) Cadmium, nickel, lead and zinc in earthworms from roadside soil. Environ Sci Technol 7: 1060–1062.

    CAS  Google Scholar 

  • Goats GC (1983) A comparison of field and laboratory methods for testing toxicity to earthworms. Proc 10th Int Cong Plant Prot 2: 713.

    Google Scholar 

  • Goats GC (1985) Assessment of the effects of toxic chemicals upon earthworms. PhD thesis Univ of London.

    Google Scholar 

  • Goats GC, Edwards CA (1988) The prediction of field toxicity to earthworms by laboratory methods. In: Edwards CA, Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 283–294.

    Google Scholar 

  • Goffart H (1949) Die Wirkung neuartiger insectizider Mittel auf Regenwurmer. Anz f Schadlengskunde 22: 72.

    CAS  Google Scholar 

  • Griffiths DC, Raw F, Lofty JR (1967) The effects on soil fauna of insecticides tested against wireworms (Agriotes spp) in wheat. Ann Appl Biol 60: 479–490.

    PubMed  CAS  Google Scholar 

  • Grigoreva TG (1952) The action of hexachlorane introduced into the soil on soil fauna. Dokl Usesoyuz Akad Sel-khoz Nauk Lenina 17: 16–20.

    CAS  Google Scholar 

  • Gunthart E (1947) Die bekampfung der Engelinge mit Hexachlor-cyclohexan-praparation. Mitt Schweiz Entomol Ges 20: 409–450.

    Google Scholar 

  • Hamilton RS, Harrison RM (eds) (1986) Heavy metals in small mammals in roadside environments: Implications for food chains. Proc Second Int Symp, London, Sci Total Environ 59: 317–323.

    Google Scholar 

  • Hamilton WE, Dindal DL (1983) The vermisphere concept: earthworm activity and sewage sludge. Bio Cycle-J Waste Recycling 24: 54–55.

    Google Scholar 

  • Hamilton WE, Dindal DL (1989a) Impact of landspread sewage sludge and earthworm introduction on established earthworms and soil structure. Biol Fert Soils 8: 160–165.

    Google Scholar 

  • Hamilton WE, Dindal, DL (1989b) Influence of earthworms and leaf litter on edaphic variables in sewage sludge-treated soil microcosms. Biol Fert Soils 7: 129–133.

    Google Scholar 

  • Hans RK, Gupta RC, Beg MU (1990) Toxicity assessment of four insecticides to earthworm Pheretima posthuma. Bull Environ Contam Toxicol 45: 358–364.

    PubMed  CAS  Google Scholar 

  • Hague A, Ebing W (1980) Uptake of the herbicide 14C-monolinuron by earthworms and metabolism in soil and earthworm. Jahresber Biolg Bundesans Land-u Fortswirtshaft, Berlin-u Braunschweig, 1979, pp 99.

    Google Scholar 

  • Hague A, Ebing W (1983) Toxicity determination of pesticides to earthworms in the soil substrate. Z Pflanzenkrank Pflanzenschutz 90: 395–408.

    Google Scholar 

  • Hague A, Schuphan I, Ebing W (1982) Bioavailability of conjugated and soil-bound (14C) hydroxymonolinuron-B-D-glucoside residues to earthworms and rye grass. Pestic Sci 13: 219–228.

    Google Scholar 

  • Harris GS (1949) Note on control of earthworms in greenkeeping. NZ J Sci Technol Sect B 31: 40.

    Google Scholar 

  • Hartenstein R, Neuhauser EF, Collier J (1980) Accumulation of heavy metal in the earthworm Eisenia foetida. J Environ Qual 9: 23–26.

    CAS  Google Scholar 

  • Heimbach F (1984) Correlations between three methods for determining the toxicity of chemicals to earthworms. Pestic Sci 15: 605–611.

    CAS  Google Scholar 

  • Heimbach F (1985) Comparison of laboratory methods using Eisenia foetida and Lumbricus terrestris, for the assessment of the hazard of chemicals to earthworms. Z Pflanzenkrank Pflanzenschutz 92: 186–193.

    CAS  Google Scholar 

  • Heimbach F (1988) A comparison of laboratory methods for toxicity testing with earthworms. In: Edwards CA, Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 329–336.

    Google Scholar 

  • Heimbach F, Edwards PJ (1983) The toxicity of 2-chloroacetamide and benomyl to earthworms under various test conditions in an artificial soil test. Pestic Sci 14: 635–636.

    Google Scholar 

  • Heungens A (1966) Bestrijding van regenwormen in sparreg rond en in vitro. Meded Rijksfac Landbouwwet Gent 31: 329–342.

    Google Scholar 

  • Heungens A (1968) The influence of DBCP on the soil fauna in azalea culture. Pedobiologia 8: 281–288.

    Google Scholar 

  • Heungens A (1969) L’Influence de la fumure et des pesticides aldrin, carbaryl et DBCP sur la faune du sol dans la culture des Azalees. Rev Ecol Biol Sol 4: 131–145.

    Google Scholar 

  • Honda K, Nasu T, Tatsukawa R (1984) Metal distribution in the earthworm, Pheretima hilgendorfi, and their variations with growth. Arch Environ Comtam Toxicol 13: 427–432.

    CAS  Google Scholar 

  • Hook van RI (1974) Cadmium, lead and zinc distributions between earthworms and soils. Bull Environ Contam Toxicol 12: 509–512.

    PubMed  Google Scholar 

  • Hopkins AR, Kirk VM (1957) Effects of several insecticides on the English red worm. J Econ Entomol 50: 699–700.

    CAS  Google Scholar 

  • Houpert G, Jenot M, Lardier PA (1982) La sensibilite accrue d’Eisenia fetida ( Lumbricidae) aux insecticides carbamates en presence d’atrazine. Bull Ec Natl Super Agron Ind Aliment 24: 3–9.

    CAS  Google Scholar 

  • Hoy JM (1955) Toxicity of some hydrocarbon insecticides to earthworms. NZ J Sci Technol Sect A 37: 367–372.

    Google Scholar 

  • Hyche IL (1956) Control of mites infesting earthworm beds. J Econ Entomol 49: 409–410.

    CAS  Google Scholar 

  • Ilijin AM (1969) The toxic effect of herbicides upon ants and earthworms. Zool Zh 48: 141–143.

    Google Scholar 

  • Ireland MP (1979) Metal accumulation by the earthworms Lumbricus rubellus, Dendrobaena veneta and Eiseniella tetraedra living in heavy metal polluted sites. Environ Pollut 19: 201–206.

    CAS  Google Scholar 

  • Ireland MP (1983) Heavy metal uptake and tissue distribution in earthworms. In: Satchell JE (ed) Earthworm Ecology From Darwin to Vermiculture. Chapman and Hall, London, pp 247–265.

    Google Scholar 

  • Jefferies DJ, Davis BNK (1968) Dynamics of dieldrin in soil, earthworms and song thrushes. J Wild Mgt 32: 441–456.

    Google Scholar 

  • Kale RD, Krishnamoorthy RV (1979) Pesticidal effects of Sevin (1- napthyl-n-methyl carbamate) on the survivability and abundance of earthworm Pontoscolex corethrurus. Proc Indian Acad Sci Sect B 88: 391–396.

    Google Scholar 

  • Kale RD, Krishnamoorthy RV (1982) Residual effect of Sevin on the acetylcholinesterase activity of the nervous system of the earthworm Pontoscolex corethrurus. Curr Sci 51: 885–886.

    CAS  Google Scholar 

  • Karnak RE, Hamelink JL (1982) A standardized method for determining the acute toxicity of chemicals to earthworms. Ecotoxicol Environ Saf 6: 216–222.

    CAS  Google Scholar 

  • Kelsey JM, Arlidge EZ (1968) Effects of isobenzan on soil fauna and soil structure. NZ J Agric Res 11: 245–260.

    Google Scholar 

  • Keogh RG, Whitehead PH (1975) Observations on some effects of pasture spraying with benomyl and carbendazim on earthworm activity and litter removal from pasture. NZ J Exp Agric 3: 103–104.

    CAS  Google Scholar 

  • King JW, Dale JL (1977) Reduction of earthworm activity by fungicides applied to putting green turf. Ark Farm Res 26: 12.

    CAS  Google Scholar 

  • Knuutinen J, Palm H, Hakala H (1990) Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. Chemosphere 20: 609–623.

    CAS  Google Scholar 

  • Korschgen LJ (1970) Soil-food-chain-pesticide wildlife relationships in aldrin-treated fields. J Wild Mgt 34: 186–199.

    CAS  Google Scholar 

  • Kreis B, Edwards P, Cuendet G, Tarradellas J (1987) The dynamics of PCBs between earthworm populations and agricultural soils. Pedobiologia 30: 379–388.

    Google Scholar 

  • Kring JB (1969) Mortality of the earthworm Lumbricus terrestris L. following soil applications of insecticides in a tobacco field. J Econ Entomol 62: 963.

    CAS  Google Scholar 

  • Krivoluckij DA, Tichomirova AL, Turcaninova VA (1972) Strukturanderungen des tierbesatzes (Land-und bodenwirbellose) unter dem Einfluss der kontamination des bodens mit Sr90. Pedobiologia 12: 374–380.

    Google Scholar 

  • Krivolutsky D, Turcaninova A, Mikhaltsova Z (1982) Earthworms as bioindicators of radioactive soil pollution. Pedobiologia 23: 263–265.

    Google Scholar 

  • Krupka RM (1974) On the anticholinesterase activity of benomyl. Pestic Sci 5: 211–216.

    CAS  Google Scholar 

  • Kruse EA, Barrett GW (1985) Effects of municipal sludge and fertilizer on heavy metal accumulation in earthworms. Environ Pollut 38: 235–244.

    CAS  Google Scholar 

  • Kuhle JC (1983) Ecotoxicological model studies to test the suitability of earthworms as bioindicators. Verh Dtsch Zool Ges 1983, 147–151.

    Google Scholar 

  • Kuperman R (1990) Acidic deposition, soil invertebrates, decomposition and nutrient dynamics in oak-hickory forests of the Ohio Corridor pollution gradient. In: Loucks OL (ed) Air pollutants and forest response: The Ohio Corridor Study. Holcomb Research Institute Working Paper no. 134, Indianapolis Indiana pp 296–306.

    Google Scholar 

  • Lay MM, Casida JE (1976) Pesti Bioch Physiol 6: 442–456.

    CAS  Google Scholar 

  • Lebrun P, De Medts A, Wauthy G (1981) Comparative ecotoxicology and bioactivity of three carbamate insecticides on an experimental population of the earthworm Lumbricus herculeus. Pedobiologia 21: 225–235.

    CAS  Google Scholar 

  • Leemput L van, Swysen E, Woestenborghs R, Michielsen L, Meuldermans W, Haykants J (1989) On the terrestrial toxicity of the fungicide imazalil (enilconazole) to the earthworm species Eisenia foetida. Ecotoxicol Environ Saf 18: 313–320.

    PubMed  Google Scholar 

  • Leger RG, Millette GJF (1977) The resistance of earthworms Lumbricus terrestris and Allolobophora turgida to Captan 50 w.p. Rev Can Biol 36: 351–353.

    PubMed  CAS  Google Scholar 

  • Legg DC (1968) Comparison of various worm-killing chemicals. J Sports Turf Res Inst 44: 47–48.

    Google Scholar 

  • Lhoste J (1975) Preliminary investigations into the action of beet herbicides on the environment. be Reunion Internationale sur le desherbage Selectif en Cultures de Betteraves, Paris, 1975, pp 483–493.

    Google Scholar 

  • Lidgate HJ (1966) Earthworm control with chlordane. J Sports Turf Res Inst 42: 58.

    Google Scholar 

  • Lipa JJ (1958) Effect on earthworm and Diptera populations of BHC dust applied to soil. Nature, Lond 181: 863.

    Google Scholar 

  • Lofs-Holmin A (1980) Measuring growth of earthworms as a method of testing sublethal toxicity of pesticides. Swed J Agric Res 10: 25–33.

    CAS  Google Scholar 

  • Lofs-Holmin A (1981) Influence in field experiments of benomyl and carbendazim on earthworms (Lumbricidae) in relation to soil texture. Swed J Agric Res 11: 141–147.

    CAS  Google Scholar 

  • Lofs-Holmin A (1982a) Influence on routine pesticide spraying on earthworms (Lumbricidae) in field experiments with winter wheat. Swed J Agric Res 12: 121–123.

    CAS  Google Scholar 

  • Lofs-Holmin A (1982b) Measuring cocoon production of the earthworm Allolobophora caliginosa (Say.) as a method of testing sublethal toxicity of pesticides; an experiment with benomyl. Swed J Agric Res 12: 117–119.

    CAS  Google Scholar 

  • Lofs-Holmin A, Bostrom U (1988) The use of earthworms and other soil animals in pesticide testing. In: Edwards CA and Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 303–313.

    Google Scholar 

  • Long WH, Anderson HL, Isa AL (1967) Sugarcane growth responses to chlordane and microarthropods and effects of chlordane on soil fauna. J Econ Entomol 60: 623–629.

    CAS  Google Scholar 

  • Lord KA, Briggs GG, Neale MC, Manlove R (1980) Uptake of pesticides from water and soil by earthworms. Pesti Sci 11: 401–408.

    CAS  Google Scholar 

  • Luckmann WH, Decker GC (1960) A 5-year report of observations in the Japanese beetle control area of Shelden, Illinois. J Econ Entomol 53: 821–827.

    CAS  Google Scholar 

  • Lyons C, Milsom N, Morgan NG, Stringer A (1972) The effects of repeated applications of the grass suppressant maleic hydrazide on an orchard sward and on the soil fauna. Proc 11th Brit Weed Contr Conf 1972, pp 356–359.

    Google Scholar 

  • Ma W (1984) Sublethal toxic effects of copper on growth, reproduction and litter breakdown activity in the earthworm Lumbricus rubellus, with observations on the influence of temperature and soil pH. Environ Pollut 33: 207–219.

    CAS  Google Scholar 

  • Ma W, Edelman T, van Beersum I, Jans T (1983) Uptake of cadmium, zinc, lead and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter. Bull Environ Contam Toxicol 30: 424–427.

    PubMed  CAS  Google Scholar 

  • Malecki MR, Neuhauser EF, Loehr RC (1982) The effects of heavy metals on the growth and reproduction of E. fetida. Pedobiologia 24: 129–137.

    CAS  Google Scholar 

  • Malone CR, Reichle DE (1973) Chemical manipulation of soil biota in a fescue meadow. Soil Biol Biochem 5: 629–639.

    CAS  Google Scholar 

  • Marquenie JM, Simmers JW (1988) A method to assess potential bioavailability of contaminants. In: Edwards CA and Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, The Netherlands, pp 367–376.

    Google Scholar 

  • Martin NA (1976) Effect of four insecticides on the pasture ecosystem: V. Earthworms (Oligochaeta: Lumbricidae) and arthropoda extracted by wet sieving and salt flotation. NZ J Agric Res 19: 111–115.

    Google Scholar 

  • Martin NA (1986) Toxicity of pesticides to Allolobophora calignosa (Oligochaeta: Lumbricidae). NZ J Agric Res 29: 699–706.

    CAS  Google Scholar 

  • Martin MH, Coughtrey PJ (1975) Preliminary investigation of the levels of cadmium in a contaminated environment. Chemosphere 4: 155–160.

    CAS  Google Scholar 

  • Martinucci GB, Crespi P, Omodeo P, Osella G, Traldi G (1983) Earthworms and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) in Seveso. In: Satchell JE (ed) Earthworm Ecology. From Darwin to Vermiculture. Chapman and Hall, London, pp 275–283.

    Google Scholar 

  • Matsumura F, Murt KCR (eds) (1982) Biodegradation of Pesticides. Plenum Press, New York and London.

    Google Scholar 

  • McColl HP (1984) Nematicides and field populations of enchytraeids and earthworms. Soil Biol Biochem 16: 139–143.

    CAS  Google Scholar 

  • McEwen FL and Stephenson GR (1979) The Use and Significance of Pesticides in the Environment. John Wiley and Sons, New York.

    Google Scholar 

  • McKenry MV, Naylor P (1975) Graphical and other short statistical methods for “All-or-None” bioassay tests. J Sci Food Agric 12: 312–316.

    Google Scholar 

  • Medts A de (1981) Effects de residus de pesticides sur les Lombriciens en terre de culture. Pedobiologia 21: 439–445.

    Google Scholar 

  • Miller WE, Peterson SA, Greene JC, Callahan CA (1985) Comparative toxicology of laboratory organisms for assessing hazardous waste sites. J Environ Qual 14: 569–574.

    CAS  Google Scholar 

  • Milne DL, du Toit W (1976) The effect of citrus nematicides on the earthworm population in the soil. Citrus Grow. Sub-Trop Fruit J, 13: 15.

    Google Scholar 

  • Moeed A (1975) Effects of isobenzan, fensulfothion and diazinon on invertebrates and microorganisms. NZ J Exp Agric 3: 181–185.

    CAS  Google Scholar 

  • Morgan AJ (1986) Calcium-lead interactions involving earthworms: an hypothesis. Chem Ecol 2: 251–261.

    CAS  Google Scholar 

  • Morgan AJ, Morris B, James N, Morgan JE, Leyshon K (1986) Heavy metals in terrestrial macroinvertebrates: species differences within and between trophic levels. Chem Ecol 2: 319–334.

    CAS  Google Scholar 

  • Mori T, Kurihara Y (1979) Accumulation of heavy metals in earthworms (E. fetida) grown in composted sewage sludge. Sci Rep Tohoku Univ Ser IV (Biol) 37: 289–297.

    CAS  Google Scholar 

  • Moriarty F (1977) Prediction of ecological effects by pesticides. In: Perring FH and Mellanby K (eds) Ecological Effects of Pesticides. Linnean Society Symposium Series, No 5, Academic Press, London, pp 165–173.

    Google Scholar 

  • Moriarty F (1983) Ecotoxicology. Academic Press, New York, USA.

    Google Scholar 

  • Morrison FO (1950) The toxicity of hexachlorocyclohexane to certain microorga- nisms, earthworms and arthropods. Ontario Entomol Soc Ann Rep 80: 50–57.

    Google Scholar 

  • Nakatsugawa T, Nelson PA (1972) Studies of insecticide detoxication in invertebrates: an enzymological approach to the problem of biological magnification. In: Matsumura F, Boush GM; Misato T (eds) Environmental Toxicology of Pesticides. Academic Press, New York.

    Google Scholar 

  • Nelson PA, Stewart RR, Morelli MA, Nakatsugawa T (1976) Aldrin epoxidation in the earthworm Lumbricus terrestris L. Pestic Biochem Physiol 6: 243–253.

    CAS  Google Scholar 

  • Neuhauser EF, Durkin PR, Malecki MR, Anatra M (1986) Comparative toxicity of ten organic chemicals to four earthworm species. Comp Biochem Physiol 83C: 197–200.

    CAS  Google Scholar 

  • Neuhauser EF, Malecki MR, Loehr RC (1984) Growth and reproduction of the earthworm E. fetida after exposure to sublethal concentrations of metals. Pedo-biologia 27: 89–97.

    CAS  Google Scholar 

  • Niklas J, Kennel W (1978) Lumbricid populations in orchards of W. Germany and the influence of fungicides based on copper compounds and benzimidazole derivatives upon them. Z Pflanzenkrank Pflanzenschutz 85: 705–713.

    CAS  Google Scholar 

  • Niklas J von (1979) Histochemische Untersuchungen zur Wirkung von Pestiziden als Cholinesterase-Inhibitoven bei Lumbricus terrestris. Z Angew Zool 66: 359–368.

    Google Scholar 

  • Atel HK (1960) Earthworms in tobacco nurseries and their control. Indian Tobacco 10: 56.

    Google Scholar 

  • Perfect J (1980) The environmental impact of DDT in a tropical agroecosystem. Ambio 9: 16–21.

    CAS  Google Scholar 

  • Pietz RI, Peterson JR, Prater JE, Zenz DR (1984) Metal concentrations in earthworms from sewage sludge—amended soils at a strip mine reclamation site. J Environ Qual 13: 651–654.

    CAS  Google Scholar 

  • Polivka JB (1951) Effect bf insecticides upon earthworm populations. Ohio J Sci 51: 195–196.

    Google Scholar 

  • Potter DA, Buxton MC, Redmond CT, Patterson CG, Powell AJ (1990) Toxicity of pesticides to earthworms ( Oligochaeta: Lumbricidae) and effect on thatch degradation in Kentucky bluegrass turf. J Econ Entomol 83: 2362–2369.

    CAS  Google Scholar 

  • Prisyaznyuk AA (1950) Use of 666 for the control of chafer grubs. Agrobiologiya 5: 141–142.

    Google Scholar 

  • Randall R, Butler JD, Hughes TD (1972) The effect of pesticide on thatch accumulation and earthworm populations in Kentucky bluegrass turf. Hortscience 7: 64–65.

    Google Scholar 

  • Raw F (1959) Estimating earthworm populations by using formalin. Nature, London 184: 1661–1662.

    Google Scholar 

  • Raw F (1960) Observations on the effect of hexoestrol on earthworms and other soil invertebrates. J Agric Sci 55: 189–190.

    CAS  Google Scholar 

  • Raw F (1965) Current work on side effects of soil-applied organophosphorus insecticides. Ann Appl Biol 55: 342–343.

    CAS  Google Scholar 

  • Reinecke AJ, Nash RG (1984) Toxicity of 2,3,7,8 TCDD and short term bioaccumulation by earthworms (Oligochaeta). Soil Biol Biochem 16: 45–49.

    CAS  Google Scholar 

  • Rhee JA van (1967) Development of earthworm populations in orchard soils. In: Graff O and Satchell JE (eds) Progress in Soil Zoology. North Holland Publ Co, Amsterdam, The Netherlands, pp 360–371.

    Google Scholar 

  • Rhee JA van (1969) Effects of biocides and their residues on earthworms. Meded Rijksfac Landbouwwet Gent 34: 682–689.

    Google Scholar 

  • Rhee JA van (1975) Copper contamination effects on earthworms by disposal of pog waste in pastures. In: Vanek J (ed) Progress in Soil Zoology. Proc 5th Int Colloq Soil Zool, Praha, pp 451–456.

    Google Scholar 

  • Rhee JA van (1977) Effects of soil pollution on earthworms. Pedobiologia 17: 210–208.

    Google Scholar 

  • Rhoades WC (1963) A synecological study of the effects of the imported fire ant (Solenopsis saevissima richteri) eradication program II Light trap, soil sample, litter sample and sweep net methods of collecting. Florida Entomol 46: 301–310.

    Google Scholar 

  • Richter G (1953) Die Auswirkung von Insecktiziden auf die terricole Makrofauna. Nachrbl deut Pfanzenschutzdienst, Berlin 7: 61–72.

    Google Scholar 

  • Roark JH, Dale JL (1979) The effect of turf fungicides on earthworms. Ark Acad Sci Proc 33: 71–74.

    CAS  Google Scholar 

  • Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ Toxicol Biochem 3: 67–78.

    CAS  Google Scholar 

  • Ruppel RF, Laughlin CW (1977) Toxicity of some soil pesticides to earthworms. J Kansas Entomol Soc 50: 113–118.

    CAS  Google Scholar 

  • Ruppel RF, Laughlin CW, Fogg R (1973) Toxicities of some insecticides to earthworms. Proc North Cent Branch Entomol Soc Am 28: 189.

    Google Scholar 

  • Ruppel RF, Laughlin CW (1977) Toxicity of some soil pesticides to earthworms. J Kansas Entomol Soc 50: 113–118.

    CAS  Google Scholar 

  • Satchell JE (1955a) An electrical method of sampling earthworm populations. In: Kevan DKMCE (ed) Soil Zoology. Butterworths, London, pp 356–364.

    Google Scholar 

  • Satchell JE (1955b) The effects of BHC, DDT and parathion on soil fauna. Soils Fert 18: 279–285.

    Google Scholar 

  • Schread JC (1952) Habits and control of the oriental earthworm. Conn Agric Exp Stn Bull 556: 15.

    Google Scholar 

  • Sheehan P, Korte F, Klein W, Bourdeau P (eds) (1985) Bioaccumulation in terrestrial food chains. In Environ Behav Chem Scope 25: 257–284.

    Google Scholar 

  • Shipitalo MJ, Edwards WM, Dick WA, Owens LB (1990) Initial storm effects on macropore transport of surface-applied chemicals in no-till soil. Soil Sci Soc Am J 54: 1530–1536.

    CAS  Google Scholar 

  • Smirnoff WA, Heimpel AM (1961) Notes on the pathogenicity of Bacillus thuringiensis var. thuringiensis Berliner for the earthworm, Lumbricus terrestris L. J Insec Pathol 3: 403–408.

    Google Scholar 

  • Soni R, Abbasi SA (1981) Mortality and reproduction in earthworm Pheretima posthuma exposed to chromium (IV). Int J Environ Stud 17: 147–149.

    CAS  Google Scholar 

  • Springett JA, Syers JK (1984) Effect of pH and calcium content of soil on earthworm cast production in the laboratory. Soil Biol Biochem 16: 185–189.

    CAS  Google Scholar 

  • Stenersen J (1979a) Action of pesticides on earthworms, part 1: The toxicity of cholinesterase-inhibiting insecticides to earthworms as evaluated by laboratory tests. Pestic Sci 10: 66–74.

    CAS  Google Scholar 

  • Stenersen J (1979b) Action of pesticides on earthworms, part 2: elimination of par- athion by the earthworm Eisenia foetida (Savigny). Pestic Sci 10: 104–112.

    CAS  Google Scholar 

  • Stenersen J (1979c) Action of pesticides on earthworms, Part 3: Inhibition and reactivation of cholinesterases in Eisenia foetida (Savigny) after treatment with cholinesterase-inhibiting insecticides. Pestic Sci 10: 113–122.

    CAS  Google Scholar 

  • Stenersen J (1980a) Esterases of earthworms, Part 1: Characterisation of the cholinesterases in Eisenia foetida (Savigny) by substrates and inhibitors. Comp Biochem Physiol C Comp Pharmacol 66: 37–44.

    Google Scholar 

  • Stenersen J (1980b) Esterases of earthworms, Part 2: Characterisation of the cholinesterases in the earthworm Eisenia foetida (Savigny) by ion exchange chromatography and electrophoresis. Comp Biochem Physiol C Comp Pharmacol 66: 45–51.

    Google Scholar 

  • Stenersen J (1984) Detoxification of xenobiotics by earthworms. Comp Biochem Physiol C Comp Pharmacol 78: 249–252.

    CAS  Google Scholar 

  • Stenersen J, Gilman A, Vardanis A (1973) Carbofuran: its toxicity to and metabolism by the earthworm (Lumbricus terrestris). J Agric Food Chem 21: 166–171.

    PubMed  CAS  Google Scholar 

  • Stenersen J, Dien N (1980) Action of pesticides on earthworms, IV: uptake and elimination of oxamyl compared with carbofuran. Pestic Sci 11: 396–400.

    CAS  Google Scholar 

  • Stringer A, Lyons CH (1974) The effect of benomyl and thiophanate-methyl on earthworm populations in apple orchards. Pestic Sci 5: 189–196.

    CAS  Google Scholar 

  • Stringer A, Lyons CH (1977) The effect on earthworm populations of methods of spraying benomyl in an apple orchard. Pestic Sci 8: 647–650.

    Google Scholar 

  • Stringer A, Wright MA (1973) The effect of benomyl and some related compounds on Lumbricus terrestris and other earthworms. Pesti Sci 4: 165–170.

    CAS  Google Scholar 

  • Stringer A, Wright MA (1976) The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic Sci 7: 459–464.

    CAS  Google Scholar 

  • Stringer A, Wright MA (1980) The toxicity of methiocarb and its breakdown products to earthworms. Rept Long Ashton Res Sta 1979, pp 120–212.

    Google Scholar 

  • Takahashi K, Sakai Y (1982) The effect of the surfactants to use with herbicides in the earthworms in citrus orchards. Weed Res Jap 27: 10–15.

    Google Scholar 

  • Theilemann U (1986) Elektrischer Regenwurmfang mit der Oktett- Methode. Pedobiologia 29: 296–302.

    Google Scholar 

  • Thompson AR (1970) Effects of nine insecticides on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 5: 577.

    CAS  Google Scholar 

  • Thompson AR (1971) Effects of nine insecticides on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 5: 577–586.

    Google Scholar 

  • Thompson AR (1973) Pesticide residues in soil invertebrates. In: Edwards CA (ed) Environmental Pollution by Pesticides. Plenum, London, 87–133.

    Google Scholar 

  • Thompson AR, Edwards CA (1974) Effects of pesticides on non-target invertebrates in freshwater and soil. In: Guenzi WD (ed) Pesticides in Soil and Water. Publ, Soil Science Society of America, Wisconsin, USA, pp 341–386.

    Google Scholar 

  • Thompson AR, Sans WW (1974) Effects of soil insecticides in southwestern Ontario on non-target invertebrates: earthworms in pasture. Environ Entomol 3: 305–308.

    CAS  Google Scholar 

  • Tomlin AD, Gore FL (1974) Effects of six insecticides and fungicide on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 12: 487–492.

    PubMed  CAS  Google Scholar 

  • Tomlin AD, Tolman JH, Thorn GD (1981) Suppression of earthworm Lumbricus terrestris populations around an airport by soil application of the fungicide benomyl. Prot Ecol 2: 319–323.

    Google Scholar 

  • Venables DJ, Govern AJ, Fitzpatrick LC (1991) Earthworms as bioindicators: review of research on assessment of xenobiotic immunotoxicity. Proc Earthworm Ecotoxic Conf, Sheffield, UK (in press).

    Google Scholar 

  • Venter JM, Reinecke AJ (1988) Sublethal ecotoxicological studies with the earthworm Eisenia fetida (Lumbricidae). In: Edwards CA and Neuhauser EF (eds) Earthworms in Waste and Environmental Management. SPB Academic Publ, The Hague, Netherlands, pp 337–354.

    Google Scholar 

  • Voronova LD (1968) The effects of some pesticides on the invertebrate fauna in the south Taiga zone in the Perm region (USSR). Pedobiologia 8: 507–525.

    Google Scholar 

  • Way MJ, Scopes NEA (1965) Side effects of some soil applied systemic insecticides. Ann Appl Biol 55: 340–341.

    CAS  Google Scholar 

  • Way MJ, Scopes NEA (1968) Studies on the persistence and effects on soil fauna of some soil-applied systemic insecticides. Ann Appl Biol 62: 199–214.

    CAS  Google Scholar 

  • Weber G (1953) Die makrofauna leichter and schwerer Ackerboden and ihre Beeinflussung durch Pflanzenschutzmittel. Z Pflanzenahr Dung 61: 107–118.

    CAS  Google Scholar 

  • Welch MF, Drewes CD (1985) Escape reflex development during posterior regeneration in the earthworm, Eisenia foetida. J Exp Zool 235: 35–44.

    Google Scholar 

  • Wentsel RS, Guelta MA (1987) Toxicity of brass powder in soil to the earthworm Lumbricus terrestris. Environ Toxicol Chem 6: 741–745.

    CAS  Google Scholar 

  • Wheatley GA, Hardman JA (1964) Insecticides and chlorinated hydrocarbons and organic phosphorus compounds and residues in soil and water, carrots and earthworms. Rept Natl Veg Res Sta 15: 63–65.

    Google Scholar 

  • Wheatley GA, Hardman JA (1968) Organochlorine insecticide residues in earthworms from arable soils. J Sci Food Agric 19: 219–225.

    CAS  Google Scholar 

  • White GC (1980) Effects of dinoseb sprays on earthworms. Rept East Mailing Res Sta 1979, p 46.

    Google Scholar 

  • Whitney WK (1967) Laboratory tests with Dursban and other insecticides in soil. J Econ Entomol 60: 68–74.

    CAS  Google Scholar 

  • Wright MA (1977) Effects of benomyl and some other systemic fungicides on earthworms. Ann Appl Biol 87: 520–524.

    CAS  Google Scholar 

  • Wright MA, Stringer A (1973) The toxicity of thiabendazole, benomyl, methyl benzimidazol-2-yl carbamate and thophanate-methyl to the earthworm, Lumbricus terrestris. Pestic Sci 4: 431–432.

    CAS  Google Scholar 

  • Wright MA, Stringer A (1980) Lead, zinc, and cadmium content of earthworms from pasture in the vicinity of an industrial smelting complex. Environ Pollut Ser A 23: 313–321.

    CAS  Google Scholar 

  • Yadav DV, Mittla PK, Agarwal HC, Pillai MKK (1981) Organochlorine insecticide residues in soil and earthworms in the Delhi area (India). Pestic Monit J 15: 80–81

    PubMed  CAS  Google Scholar 

  • Yadav DV, Pillai MKK, Agarwal HC (1976) Uptake and metabolism of DDT and Lindane by the earthworm, Pheretima posthuma. Bull Environ Contam Toxicol 16: 541–545.

    PubMed  CAS  Google Scholar 

  • Zachariae G, Ebert KH (1970) Does chemical pest control in forests endanger earthworms? Chlorinated hydrocarbon insecticides. Pedobiologia 10: 407–433.

    Google Scholar 

  • Zoran MJ, Heppner Ti, Drewes CD (1986) Teratogenic effects of the fungicide benomyl on posterior segmental regeneration in the earthworm, Eisenia fetida. Pestic Sci 17: 641–652.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Edwards, C.A., Bohlen, P.J. (1992). The Effects of Toxic Chemicals on Earthworms. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 125. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2890-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2890-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7710-1

  • Online ISBN: 978-1-4612-2890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics