Skip to main content

Bacterial and Enzymatic Bioassays for Toxicity Testing in the Environment

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 125))

Abstract

More than 50,000 chemicals, most of which are xenobiotics, are in common use and new ones are continually and regularly added to the inventory. Serious concern has been raised over the release of these xenobiotics or their metabolites (Liu et al. 1990) into the environment. Their deleterious effect on the environment can be assessed via acute and chronic toxicity tests, using mostly fish and invertebrate bioassays (Peltier and Weber 1985). However, due to the large number of chemicals to be tested, ecotoxicologists and environmental scientists and engineers are now using short-term toxicity assays which are mostly based on inhibition of the activity of enzymes, bacteria, fungi, algae, and protozoa (Bitton 1983; Bitton and Dutka 1986; Dutka and Bitton 1986; Bitton et al. 1989; Liu and Dutka 1984). Microbial bioassays have been used for screening the toxicity of wastewater effluents and for monitoring the quality of reclaimed water (Grabow et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleman JE (1988) Respiration-based evaluation of nitrification inhibition using enriched Nitrosomonascultures. In: Scholze RJ, Smith ED, Bandy JT, Yu YC, Basilico JV (eds) Biotechnology for degradation of toxic chemicals in hazardous wastes sites. Noyes Dat Corp., Park Ridge, NJ. pp 642–650.

    Google Scholar 

  • Alsop GM, Waggy GT, Conway RA (1980) Bacterial growth inhibition test. J Water Pollut Control Fed 52: 2452–2456.

    CAS  Google Scholar 

  • Anderson AC, Abdelghani AA (1980) Toxicity of selected arsenical compounds in short term bacterial bioassays. Bull Environ Contam Toxicol 24: 289–294.

    Article  Google Scholar 

  • Atkinson DS, Switzenbaum MS (1988) Microtox assessment of anaerobic bacterial toxicity. In: Scholze RJ, Smith ED, Bandy JT, Yu YC, Basilico JV (eds) Biotechnology for degradation of toxic chemicals in hazardous wastes sites, Noyes Dat Corp., Park Ridge, NJ. pp 622–641.

    Google Scholar 

  • Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 18: 601–607.

    Article  CAS  Google Scholar 

  • Bewley RJF, Stotzky G (1983) Effects of cadmium and zinc on microbial activity in soil: Influence of clay minerals. Part II: Metals added simultaneously. Sci Total Environ 31: 57–69.

    Article  CAS  Google Scholar 

  • Bitton G (1983) Bacterial and biochemical tests for assessing chemical toxicity in the aquatic environment: A review. CRC Crit Rev Environ Control 13: 51–67.

    Article  CAS  Google Scholar 

  • Bitton G, Dutka BJ, eds (1986) Toxicity testing using microorganisms, Vol. 1. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bitton G, Dutka BJ, Hendricks CW (1989) Microbial toxicity tests. In: Warren-Hicks W, Parkhurst BR, Baker SS (eds) Ecological assessment of hazardous waste sites, U.S. E.P.A., Corvallis, OR, Report EPA 600/3–89/013. pp 644–666.

    Google Scholar 

  • Bitton G, Dutton RJ, Koopman B (1988) Cell permeability to toxicants: An important parameter in toxicity tests using bacteriia. CRC Crit Rev Environ Control 18: 177–188.

    Article  CAS  Google Scholar 

  • Bitton G, Koopman B (1986) Biochemical tests for toxicity screening. In: Bitton G, Dutka BJ (eds) Toxicity testing using microorganisms, CRC Press, Boca Raton, FL. pp 27–55.

    Google Scholar 

  • Blaise C (1991) Microbiotests in aquatic ecotoxicology: Characteristics, utility, and prospects. Environ Toxicol Water Qual 6: 145–155.

    Article  Google Scholar 

  • Liaise C, van Coillie R, Bermingham N, Coulombe G (1987) Comparaison des reponses toxiques de trois indicateurs biologiques (bacteries, algues, poissons) exposes a des effluents de fabriques de pates et papiers. Rev Intern Sciences Eau 3: 9–17.

    Google Scholar 

  • Blaise C, Legault R, Bermingham N, van Coillie R, Vasseur P (1986) A simple microplate algal assay technique for aquatic toxicity assessment. Toxicity Assess 1: 261–281.

    Article  CAS  Google Scholar 

  • Blaise C, Sergy G, Wells P, Bermingham N, van Coillie R (1988) Biological testing—Development, application, and trends in Canadian Environmental Protection Laboratories. Tox Assess 3: 385–406.

    Article  Google Scholar 

  • Brezonik PL, Patterson JW (1972) Activated sludge ATP: Effects of environmental stresses. J San Eng Div, Proc Am Soc Civil Eng 97: 813–821.

    Google Scholar 

  • Brouwer HT, Murphy T, McArdle L (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ Toxicol Chem 9: 1353–1358.

    Article  CAS  Google Scholar 

  • Bulich AA (1979) Use of luminescent bacteria for determining toxicity in aquatic environments. In: Markings LL, Kimerle RA (eds) Aquatic toxicology. Am Soc Test Mat, Philadelphia, PA.

    Google Scholar 

  • Bulich AA (1986) Bioluminescent assays. In: Bitton G, Dutka BJ (eds) Toxicity testing using microorganisms, Vol 1. CRC Press, Boca Raton, FL. pp 57–74.

    Google Scholar 

  • Burns RG, ed (1978) Soil enzymes. Academic Press, London.

    Google Scholar 

  • Burton GA (1989) Evaluation of seven toxicity tests and their relationships to stream parameters. Tox Assess 4: 149–159.

    Article  CAS  Google Scholar 

  • Calleja AJ, Baldasana M, Mulet A (1986) Toxicity analysis of leachates from hazardous wastes via Microtox and Daphnia magna. Tox Assess 1: 73–83.

    Article  CAS  Google Scholar 

  • Calleja AJ, Baldasana M, Mulet A (1986) Toxicity analysis of leachates from hazardous wastes via Microtox and Daphnia magna. Tox Assess 1: 73–83.

    Article  CAS  Google Scholar 

  • Carlisle SM, Trevors JT (1986) Effects of the herbicide glyphosate on nitrification, denitrification, and acetyl reduction in soil. Water Air Soil Pollut 29: 189–203.

    Article  CAS  Google Scholar 

  • Cenci G, Morozzi G., Caldini G (1985) Injury by heavy metals in Escherichia coli. Bull Environ Contam Toxicol 34: 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Chang FH, Broadbent FE (1982) Influence of trace metals on some soil nitrogen transformations. J Environ Qual 11: 1–4.

    Article  CAS  Google Scholar 

  • Clarke SM, Barrick CW, Samoiloff MR (1990) A bioassessment battery for use in an industrial setting: A new management approach. Tox Assess 5: 153–166.

    Article  CAS  Google Scholar 

  • Christensen GM, Olson D, Reidel B (1982) Chemical effects on the activity of eight enzymes: A review and a discussion relevant to environmental monitoring. Environ Res 29: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ (1975) The role of the bacterial cell envelope in antibiotic resistance. J Antimicrob Chemo 1: 363–377.

    Article  CAS  Google Scholar 

  • Curtis C, Lima A, Lorano SJ, Veith GD (1982) Evaluation of a bacterial bioluminescence bioassay as a method for predicting acute toxicity of organic chemicals to fish. In: Pearson JG, Foster RB, Bishop WE (eds) Aquatic toxicity and hazard assessment, STP #766. Am. Soc. Test. Mat., Philadelphia, PA. pp 170–178.

    Chapter  Google Scholar 

  • Dermer OC, Curtis VS, Leach FR (1980) Biochemical Indicators of Subsurface Pollution. Ann Arbor Sci. Pub., Ann Arbor, MI.

    Google Scholar 

  • Devillers J, Steiman R, Seigle-Murandi F, Prevot P, Andre C, Benoit-Guyot JL (1990) Combination of single-species laboratory tests for the assessment of the ecotoxicity of p-benzoquinone. Tox Assess 5: 405–416.

    Article  CAS  Google Scholar 

  • Douglas LA, Bremner JM (1971) A rapid method of evaluating different compounds as inhibitors of urease activity in soils. Soil Biol Biochem 3: 309–315.

    Article  CAS  Google Scholar 

  • Dutka BJ, Bitton G, eds (1986) Toxicity Testing using Microorganisms, Vol 2. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dutka BJ, Gorrie JF (1989) Assessment of toxicant activity in sediments by the ECHA Biocide Monitor. Environ Pollut 57: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Dutka BJ, Jones K, Kwan KK, Bailey H, McInnis R (1988) Use of microbial and toxicant screening tests for priority site selection of degraded areas in water bodies. Water Res 22: 503–510.

    Article  CAS  Google Scholar 

  • Dutka BJ, Kwan KK (1988) Battery of screening tests approach applied to sediment extracts. Tox Assess 3: 303–314.

    Article  CAS  Google Scholar 

  • Dutton RI, Bitton G, Koopman B (1988) Enzyme biosynthesis versus enzyme activity as a basis for microbial toxicity testing. Tox Assess 3: 245–253.

    Article  CAS  Google Scholar 

  • Dutton RJ, Bitton G, Koopman B, Agami O (1990) Effect of environmental toxicants on enzyme biosynthesis: A comparison of ß-galactosidase, a-glucosidase and tryptophanase. Arch Environ Contam Toxicol 19: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Dutton RJ, Bitton G, Koopman B, Agami O (1990) Inhibition of ß-galactosidase biosynthesis in Escherichia coli: Effect of alterations of the outer membrane permeability to environmental toxicants. Tox Assess. 5: 253–264.

    Article  CAS  Google Scholar 

  • Elnabarawy MT, Robideau RR, Beach SA (1988) Comparison of three rapid toxicity test procedures: Microtox, Polytox and activated sludge respiration inhibition. Tox Assess 3: 361–370.

    Article  CAS  Google Scholar 

  • EPA (1986a) Permit guidance manual on hazardous waste land treatment demonstrations. Office of Solid Waste, U.S. E.P.A.; Washington, D. C. Report EPA530/SW-86–032.

    Google Scholar 

  • EPA (1986b) Waste/soil treatability studies for four complex wastes. Robert S. Kerr Environ. Res. Lab., U.S. E.P.A., Ada, OK. Report EPA/600/6–86/003a.

    Google Scholar 

  • Giesy JP, Craney RL, Newsted JL, Rosiu CJ, Benda A, Kreis RG, Horvath FJ (1988a) Comparison of three sediments bioassay methods using Detroit River sediments. Environ Toxicol Chem 7: 483–498.

    Article  CAS  Google Scholar 

  • Giesy JP, Rosiu CJ, Craney RL, Newsted JL, Benda A, Kreis RG, Horvath FJ (1988b) Toxicity of Detroit River sediments interstitial water to the bacterium Photobacterium phosphoreum. J Great Lakes Res 14: 502–513.

    Article  Google Scholar 

  • Guibault GG, Kramer DN (1964) Fluorimetric determination of lipase, acylase, a-and ’y-chymotrypsin and inhibitors of these enzymes. Anal Chem 36: 409412.

    Google Scholar 

  • Grabow WOK, Morgan WSG, Slabbert JL (1985) Bioassays used for evaluating the quality of reclaimed water in Southern Africa. Water Qual Bull 10: 29–35.

    Google Scholar 

  • Hancock REW (1984) Alterations in outer membrane permeability. Ann Rev Microbiol 13: 1–34.

    Google Scholar 

  • Hinwood AL, McCormick MJ (1987) The effect of ionic solutes on EC50 values measured using the Microtox Test. Toxicity Assess 2: 449–461.

    Article  CAS  Google Scholar 

  • Glolland HT, Coppage DL, Butler PA (1967) Use of fish brain acetylcholinesterase to monitor pollution by organophosphorus pesticides. Bull Environ Contam Toxicol 2: 156–162.

    Article  Google Scholar 

  • Acob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318–356.

    Article  Google Scholar 

  • Ohnson LD, Young JC (1983) Inhibition of anaerobic digestion by organic priority pollutants. J Water Pollut Control Fed 55: 1441–1449.

    Google Scholar 

  • Caiser KLE, Ribo JM (1988) Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation. Tox Assess 3:195–237.

    Article  Google Scholar 

  • Catayama K (1984) Inhibition by copper ion of the activity of ß-galactosidase and dehydrogenase of activated sludge. Japan J Water Poll Res 7: 100–107.

    Article  Google Scholar 

  • Katayama-Hirayama K (1986) Inhibition of the activities of ß-galactosidase and dehydrogenase of activated sludge by heavy metals. Water Res 20: 491–494.

    Article  CAS  Google Scholar 

  • Kennicutt MC (1980) ATP as an indicator of toxicity. Water Res 14: 225–228.

    Article  Google Scholar 

  • King EF, Dutka BJ (1986) Respirometric techniques. In: Bitton G, Dutka BJ (eds) Toxicity testing using microorganisms, Vol 1. CRC Press, Boca Raton, FL. pp 75–113.

    Google Scholar 

  • Koopman B, Bitton G, Dutton R J, Logue C L (1988) Toxicity testing in wastewater systems: Application of a short-term assay based on induction of the lacoperon in E. coli. Water Sci Technol 20 (11/12): 137–143.

    CAS  Google Scholar 

  • Koopman B, Bitton G, Delfino JJ, Mazidji C, Voiland G, Neita D (1989) Toxicity screening in wastewater systems. Final report (contract no. WM-222) to the Florida Dept. of Environ. Regul., Tallahassee, FL.

    Google Scholar 

  • Kwan KK, Dutka BJ (1990) Simple two-step sediment extraction procedure for use in genotoxicity and toxicity bioassays. Tox Assess 5: 395–404.

    Article  CAS  Google Scholar 

  • Lampinen J, Korpela M, Saviranta P, Kroneld R, Karp M (1990) Use of Escherichia colicloned with genes encoding bacterial luciferase for evaluation of chemical toxicity. Tox Assess 5: 337–350.

    Article  CAS  Google Scholar 

  • Levi Y, Henriet C, Coutant JP, Lucas M, Leger G (1989) Monitoring acute toxicity in rivers with the help of the Microtox test. Water Supply 7: 25–31.

    CAS  Google Scholar 

  • Liang CN, Tabatabai MA (1978) Effects of trace elements on nitrification in soils. J Environ Qual 7: 291–293.

    Article  CAS  Google Scholar 

  • Liu D (1987) Agar plate method for rapid screening of chemical toxicity. Tox Assess 2: 463–468.

    Article  Google Scholar 

  • Liu D, Dutka BJ, eds (1984) Toxicity Screening Procedures using Bacterial Systems. Marcel Dekker, NY.

    Google Scholar 

  • Liu D, Kwasnieska K (1981) An improved agar plate method for rapid assessment of chemical inhibition to microbial populations. Bull Environ Contam Toxicol 27: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Maguire RJ, Dutka BJ, Pacepavicius GJ (1990) Rationale for including metabolites in chemical toxicity bioassay. Tox Assess 5: 179–188.

    Article  CAS  Google Scholar 

  • Logue CL, Koopman B, Brown GK, Bitton G (1989) Toxicity screening in a large, municipal wastewater system. J Water Pollut Cont Fed 61: 632–640.

    Google Scholar 

  • Martin MH, Duncan EM, Coughtrey RI (1982) The distribution of heavy metals in a contaminated woodland ecosystem. Environ Pollut Sci B 3: 147–157.

    Article  CAS  Google Scholar 

  • Mathes K, Schulz-Berendt VM (1988) Ecological risk assessment of chemicals by measurements of nitrification combined with a computer simulation model of the N-cycle. Tox Assess 3: 271–286.

    Article  CAS  Google Scholar 

  • Mazidji CN, Koopman B, Bitton G, Voiland G (1990) Use of Microtox and Ceriodaphniabioassays in wastewater fractionation. Tox Assess 5: 265–277.

    Article  CAS  Google Scholar 

  • Morel JL, Bitton G, Koopman B (1988) Use of Microtox for assessing copper com- plexation with organic ligands. Arch Environ Contam Toxicol 17: 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Mount DI, Anderson-Carnahan L (1987) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures. U.S. E.P.A., Duluth, MN. Report EPA 600 (draft document).

    Google Scholar 

  • Munkittrick KR, Power EA, Sergy GA (1991) The relative sensitivity of Microtox, daphnid, rainbow trout and fathead minnow acute lethality tests. Environ Toxicol Water Qual 6: 35–62.

    Article  CAS  Google Scholar 

  • Nakae T (1986) Outer membrane permeability of bacteria. Crit Rev Microbiol 13: 162.

    Article  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1–32.

    PubMed  CAS  Google Scholar 

  • Nikaido H (1976) Outer membrane of Salmonella typhimurium: Transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433: 118–132.

    Article  PubMed  CAS  Google Scholar 

  • Obst U, Holzapfel-Pschorn A, Wiegand-Rosinus M (1988) Application of enzyme assays for toxicological water testing. Tox Assess 3: 81–91.

    Article  CAS  Google Scholar 

  • Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13: 485–492.

    Article  CAS  Google Scholar 

  • Paran JH, Sharma S, Qureshi AA (1990) A rapid and simple toxicity assay based on growth rate inhibition of Pseudomonas fluorescens. Tox Assess 5: 351–365.

    Article  CAS  Google Scholar 

  • Parker CE, Pribyl EJ (1984) Assessment of bacterial ATP response as a measurement of aquatic toxicity, In: Liu D, Dutka BJ (eds) Toxicity screening procedures using bacterial systems, Marcel Dekker, NY. pp 283–293.

    Google Scholar 

  • Parkin GF, Speece RE, Yang CHJ, Kocher WM (1983) Response of methane fermentation systems to industrial toxicants. J Water Pollut Cont Fed 55: 44–53.

    CAS  Google Scholar 

  • Peltier WH, Weber CI (1985) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms, 3rd ed. U.S. E.P.A., Cincinnati, OH. Report EPA-600/4–85/013.

    Google Scholar 

  • Persaud D, Lomas TD, Hayton A (1987) The in-place pollutant program, Vol III: Phase 1 studies. Water Res. Branch, Ontario Ministry of the Environment, Canada.

    Google Scholar 

  • Plotkin S, Ram NM (1984) Multiple bioassays to assess the toxicity of a sanitary landfill leachate. Arch Environ Contam Toxicol 13: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Polybac Corp (1986) Polytox rapid toxicity test procedure. Polybac application procedure, Allentown, PA.

    Google Scholar 

  • Qureshi A, Flood KW, Thompson SR, Janhurst SM, Inniss CS, Rokosh DA (1982) Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and effluents. In: Pearson JG, Foster RB, Bishop WE (eds) Aquatic toxicology and hazard assessment, 5th Conf., STP No. 766. Am. Soc. Test. Mat., Philadelphia. pp 179–195.

    Chapter  Google Scholar 

  • Reidel B, Christensen G (1979) Effect of selected water toxicants and other chemicals upon adenosine triphosphatase activity in vitro. Bull Environ Contam Toxicol 23: 365–368.

    Article  Google Scholar 

  • Reinhartz A, Lampert I, Herzberg M, Fish F (1987) A new short-term, sensitive bacterial assay kit for the detection of toxicants. Tox Assess 2: 193–206.

    Article  CAS  Google Scholar 

  • Ribo JM, Kaiser KLE (1983) Effect of chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12: 1421–1442.

    Article  CAS  Google Scholar 

  • Ribo JM, Rogers F (1990) Toxicity of mixtures of aquatic contaminants using the luminesecent bacterial bioassay. Tox Assess 5: 135–152.

    Article  CAS  Google Scholar 

  • Rhodes AN, Hendricks CW (1990) A continuous flow method for measuring effects of chemicals on soil nitrification. Tox Assess 5: 77–89.

    Article  CAS  Google Scholar 

  • Ross PE, Henebry MS (1989) Use of four microbial tests to assess the ecological hazard of contaminated sediments. Tox Assess 4: 1–21.

    Article  CAS  Google Scholar 

  • Sanchez PS, Sato MIZ, Paschoal CMRB, Alves MN, Furlan EV, Martins MT (1988) Toxicity assessment of industrial effluents from Sao Paulo state, Brazil, using short-term microbial assays. Tox Assess 3: 55–80.

    Article  CAS  Google Scholar 

  • Schiewe MH, Hawk EG, Actor DI, Krahn MM (1985) Use of bacterial bioluminescence assay to assess toxicity of contaminated marine sediments. Can J Fish Aquat Sci 42: 1244–1248.

    Article  CAS  Google Scholar 

  • Sergy G (1987) Recommendations on aquatic biological tests and procedures for environmental protection, conservation, and protection. Tech. Dev. and Tech. Serv. Branch, Env. Prot., Conserv. Prot., Environ. Canada, Edmonton, Alberta, 102 pp.

    Google Scholar 

  • Seyfried PL, Morgan CB (1983) Effect of cadmium on lake water bacteria as determined by the luciferase assay of adenosine triphosphate. In: Bishop NE, Caldwell RD, Heidelph BB (eds) Aquatic toxicology and hazard assessment, 6th Symposium, STP No. 802, Amer. Soc. Test. Mat., Philadelphia, PA. pp 425–441.

    Chapter  Google Scholar 

  • Shapiro HM (1990) Flow cytometry in laboratory microbiology: New directions. Am Soc Microb News 56: 584–588.

    Google Scholar 

  • Slabbert JL (1986) Improved bacterial growth test for rapid water toxicity screening. Bull Environ Contam Toxicol 37: 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Symons BD, Sims RC (1988) Assessing detoxification of a complex hazardous waste, using the Microtox bioassay. Arch Environ Contam Toxicol 17: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT, Mayfield CI, Innis WE (1981) A rapid toxicity test using Pseudomonas fluorescens. Bull Environ Contam Toxicol 28: 433–439.

    Google Scholar 

  • Trevors JT (1986) Bacterial growth and activity as indicators of toxicity. In: Bitton G, Dutka BJ (eds) Toxicity testing using microorganisms, Vol 1. CRC Press, Boca Raton, FL. pp 9–25.

    Google Scholar 

  • True CJ, Hayward AA (1990) Relationships between Microtox test results, extraction methods and physical and chemical compositions of marine sediment samples. Tox Assess 5: 29–45.

    Article  CAS  Google Scholar 

  • Tyler G (1976) Heavy metal pollution, phosphatase activity, and mineralization of organic phosphorus in forest soils. Soil Biol Biochem 8: 327–332.

    Article  CAS  Google Scholar 

  • Wainwright M (1978) A review of the effects of pesticides on microbial activity in soils. J Soil Sci 29: 287–298.

    Article  CAS  Google Scholar 

  • Wang X, Yu X, Bartha R (1990) Effect of bioremediation on polycyclic hydrocarbon residues in soil. Environ Sci Technol 24:1086–1089.

    Article  CAS  Google Scholar 

  • Williamson KJ, Johnson DG (1981) A bacterial bioassay for assessment of wastewater toxicity. Water Res 15: 383–390.

    Article  CAS  Google Scholar 

  • Xu H, Dutka BJ (1987) ATP-TOX system: A new rapid sensitive bacterial toxicity screening system based on the determination of ATP. Tox Assess 2: 149–166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bitton, G., Koopman, B. (1992). Bacterial and Enzymatic Bioassays for Toxicity Testing in the Environment. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 125. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2890-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2890-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7710-1

  • Online ISBN: 978-1-4612-2890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics