Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 2))

Abstract

As described in the chapters in Volume I of this series, a striking feature of the auditory brainstem pathways is the highly divergent and convergent nature of the projections from the auditory nerve to the inferior colliculus (IC). The fibers of the auditory nerve (AN) bifurcate on entering the cochlear nucleus (CN) and make synapses on a number of morphologically different types of neuron in different divisions of the CN. Each of the major neuronal types that sends its axon out of the CN does so with a distinctive projection pattern that gives rise to further divergence. Some CN neurons project directly to the IC, whereas others project to various divisions of the superior olivary complex (SOC) and nuclei of the lateral lemniscus (NLL), which in turn project to the IC. The central nucleus of the IC (ICC; see definition below) consequently receives a highly convergent projection from more than 20 identified neuron types in approximately 10 major brainstem nuclei. This highly divergent and convergent pattern of projections is illustrated schematically in Figure 4.1 for the projections deriving from a restricted region of the basilar membrane (cf. Merzenich, Jenkins, and Middlebrooks 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM (1986) The Auditory Midbrain. Clifton, NJ: Humana.

    Book  Google Scholar 

  • Aitkin LM, Martin RL (1987) The representation of stimulus azimuth by high best-frequency azimuth-selective neurons in the central nucleus of the inferior colliculus of the cat. J Neurophysiol 57:1185–1200.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Anderson DJ, Brugge JF (1970) Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J Neurophysiol 33:421–440.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Gates GR, Phillips SC (1984) Responses of neurons in inferior colliculus to variations in sound-source azimuth. J Neurophysiol 52:1–17.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Pettigrew JD, Calford MB, Phillips SC, Wise LZ (1985) Representation of stimulus azimuth by low-frequency neurons in inferior colliculus of the cat. J Neurophysiol 53:43–59.

    PubMed  CAS  Google Scholar 

  • Altman JA (1978) Sound localization—Neurophysiological mechanisms. Chicago: Beltone Institute for Hearing Research, pp. 327–352.

    Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701.

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194:649–662.

    Article  PubMed  CAS  Google Scholar 

  • Batra R, Kuwada S, Stanford TR (1989) Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J Neurophysiol 61:257–268.

    PubMed  CAS  Google Scholar 

  • Benevento LA, Coleman PD, Loe PR (1970) Responses of single cells in cat inferior colliculus to binaural click stimuli: Combinations of intensity levels, time differences and intensity differences. Brain Res 17:387–405.

    Article  PubMed  CAS  Google Scholar 

  • Berman AL (1968) The Brainstem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: Univ. Wisconsin Press.

    Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454.

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1970) Cat superior olive S-segment cell discharge to tonal stimulation. In: Neff WD (ed) Contributions to Sensory Physiology Vol. 4. New York: Academic, pp. 143–213.

    Google Scholar 

  • Bourk TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hear Res 4:215–241.

    Article  PubMed  CAS  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978) Localization of pure tones by Old World monkeys. J Acoust Soc Am 63:1484–1492.

    Article  Google Scholar 

  • Brugge JF, Merzenich MM (1973) Patterns of activity of single neurons of the auditory cortex of monkey. In: Møller AR (ed) Basic Mechanisms in Hearing. New York: Academic, pp. 745–772.

    Google Scholar 

  • Brugge JF, Anderson DJ, Aitkin LM (1970) Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J Neurophysiol 33:441–458.

    PubMed  CAS  Google Scholar 

  • Burr DC, Ross J (1979) How does binocular delay give information about depth? Vision Res. 19:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399.

    Article  PubMed  CAS  Google Scholar 

  • Caird D, Klinke R (1987) Processing of interaural time and intensity differences in the cat inferior colliculus. Exp Brain Res 68:379–392.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hear Res 14:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Wise LZ, Pettigrew JD (1985) Coding of sound location and frequency in the auditory midbrain of diurnal birds of prey, families Accipitridae and Falconidae. J Comp Physiol A 157:149–160.

    Article  Google Scholar 

  • Calford MB, Moore DR, Hutchings ME (1986) Central and peripheral contributions to the coding of acoustic space by neurons in the inferior colliculus of the cat. J Neurophysiol 55:587–603.

    PubMed  CAS  Google Scholar 

  • Carney LH, Yin TCT (1989) Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks: excitatory and inhibitory components. J Neurophysiol 62:144–161.

    PubMed  CAS  Google Scholar 

  • Carr CE (1986) Time coding in electric fish and barn owls. Brain Behav Evol 28:122–133.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc Natl Acad Sci USA 85:8311–8315.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Chan JCK, Yin TCT, Musicant AD (1987) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. II. Responses to band-pass filtered noises. J Neurophysiol 58:543–561.

    PubMed  CAS  Google Scholar 

  • Colburn HS, Durlach N (1978) Models of binaural interaction. In: Carterette EC, Friedman MP (eds) Handbook of Perception, Vol. 4. New York: Academic, pp. 467–518.

    Google Scholar 

  • Colburn HS, Moss PJ (1981) Binaural interaction models and mechanisms. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 283–288.

    Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133.

    Article  PubMed  CAS  Google Scholar 

  • Crow G, Rupert AL, Moushegian G (1978) Phase locking in monaural and binaural medullary neurons: Implications for binaural phenomena. J Acoust Soc Am 64:493–501.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (1989) Coding of free field intensity in the auditory midbrain of the leopard frog. I. Results for tonal stimuli. Hear Res 40:147–166.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res Rev 13:139–163.

    Article  Google Scholar 

  • Epping WJM, Eggermont JJ (1986) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hear Res 24:55–72.

    Article  PubMed  CAS  Google Scholar 

  • Evans EF (1981) The dynamic range problem: Place and time coding at the level of the cochlear nerve and nucleus. In: Syka J, Aitkin LM (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 69–85.

    Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Exp Brain Res 40:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Ferster D (1981) A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J Physiol (Lond.) 311:623–655.

    CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1985) Differential encoding of rapid changes in sound amplitude by second-order auditory neurons. Exp Brain Res 60:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1985) Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. J Neurophysiol 54:757–781.

    PubMed  CAS  Google Scholar 

  • Gardner JC, Douglas RM, Cynader MS (1985) A time-based stereoscopic depth mechanism in the visual cortex. Brain Res 328:154–157.

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD, Rhode WS, Hazelton DW (1969) Responses of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide-band spectra. J Neurophysiol 32:960–974.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Baker BN (1988) Neuroanatomical distribution of receptors for three potential inhibitory neurotransmitters in the brainstem auditory nuclei of the cat. J Comp Neurol 275:288–308.

    Article  PubMed  CAS  Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm: Efferent projections of the lateral superior olive. J Neurosci 3:1521–1537.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. J Neurophysiol 31:639–656.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Gordon B (1973) Receptive fields in deep layers of cat superior colliculus. J Neurophysiol 36:157–178.

    PubMed  CAS  Google Scholar 

  • Gordon B (1975) Superior colliculus: Structure, physiology and possible functions. In: Hunt CC (ed) Physiology, Series 1, Volume 3, Neurophysiology. London: Butterworths, pp. 185–230.

    Google Scholar 

  • Graybiel AM (1972) Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav Evol 6:363–393.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1973) The thalamo-cortical projection of the so-called posterior nuclear group: A study with anterograde degeneration methods in the cat. Brain Res 49:229–244.

    Article  PubMed  CAS  Google Scholar 

  • Guinan Jr JJ, Guinan SS, Norris BE (1972) Single auditory units in the superior olivary complex. I. Response to sounds and classifications based on physiological properties. Int J Neurosci 4:101–120.

    Article  Google Scholar 

  • Guinan Jr JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166.

    Article  Google Scholar 

  • Hall JL (1965) Binaural interaction in the accessory superior-olivary nucleus of the cat. J Acoust Soc Am 37:814–823.

    Article  PubMed  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985) Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Mollossus ater. J Neurophysiol 53:89–109.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Howe ME (1974) Anatomy of the afferent auditory nervous system of mammals. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology. Vol V. Auditory System. Part 1. New York: Springer-Verlag, pp. 283–336.

    Google Scholar 

  • Henning GB (1974) Lateralization and the binaural masking-level difference. J Acoust Soc Am 55:1259–1262.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Chan JCK, Yin TCT (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. J Neurophysiol 53:726–745.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The auditory brainstem: A review of the structure and function of auditory brainstem processing mechanisms. In: Ottoson D (ed) Progress in Sensory Physiology, Vol. 7. Berlin: Springer-Verlag, pp. 1–279.

    Google Scholar 

  • Irvine DRF (1987a) Interaural intensity differences in the cat: Changes in sound pressure level at the two ears associated with azimuthal displacements in the frontal horizontal plane. Hear Res 26:267–286.

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF (1987b) A comparison of two methods for the measurement of neural sensitivity to interaural intensity differences. Hear Res 30:169–180.

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF, Gago G (1990) Binaural interaction in high-frequency neurons in inferior colliculus of the cat: Effects of variations in sound pressure level on sensitivity to interaural intensity differences. J Neurophysiol 63:570–591.

    PubMed  CAS  Google Scholar 

  • Irvine DRF, Wise LZ (1983) Topographic organization of interaural-intensity-difference sensitivity and the representation of auditory azimuthal location in the deep layers of the superior colliculus. In: Webster WR, Aitkin LM (eds) Mechanisms of Hearing. Clayton: Monash University, pp. 101–106.

    Google Scholar 

  • Javel E, Mott JB (1988) Physiological and psychophysical correlates of temporal processes in hearing. Hear Res 34:275–294.

    Article  PubMed  CAS  Google Scholar 

  • Jay MF, Sparks DL (1987) Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J Neurophysiol 57:35–55.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Jen PH-S, Sun X, Chen D, Teng H (1987) Auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Brain Res 419:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: Effects of unilateral lesions in central auditory system. J Neurophysiol 47:987–1016.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52:819–847.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kim DO, Sirianni JG, Chang SO (1990) Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power-spectrum. Hear Res 45:95–113.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Hutchings ME (1987) Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. J Neurophysiol 57:596–624.

    PubMed  CAS  Google Scholar 

  • King AJ, Palmer AR (1983) Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: Distribution and response properties. J Physiol (Lond.) 342:361–381.

    CAS  Google Scholar 

  • Kitzes LM, Wrege KS, Cassady JM (1980) Patterns of responses of cortical cells to binaural stimulation. J Comp Neurol 192:455–472.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1983a) Space coding in the vertebrate auditory system. In: Lewis B (ed) Bioacoustics: A Comparative Approach. London: Academic, pp. 311–344.

    Google Scholar 

  • Knudsen EI (1983b) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1983c) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1984a) Synthesis of a neural map of auditory space in the owl. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic Aspects of Neocortical Function. New York: Wiley, pp. 375–396.

    Google Scholar 

  • Knudsen EI (1984b) Auditory properties of space-tuned units in owl’s optic tectum. J Neurophysiol 52:709–723.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1984c) The role of auditory experience in the development and maintenance of sound localization. Trends Neurosci 7:326–330.

    Article  Google Scholar 

  • Knudsen EI (1988) Early blindness results in a degraded auditory map of space in the optic tectum of the barn owl. Proc Natl Acad Sci USA 85:6211–6214.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978a) A neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978b) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41:870–884.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133:13–21.

    Article  Google Scholar 

  • Knudsen EI, du Lac S, Esterly SD (1987) Computational maps in the brain. Annu Rev Neurosci 10:41–65.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 303–317.

    Google Scholar 

  • Konishi M, Sullivan WE, Takahashi T (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Am 78:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localization in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 721–745.

    Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Kuwada S, Yin TCT (1983) Binaural interaction in low-frequency neurons in the inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Stanford TR, Batra R (1987) Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: Effects of changing frequency. J Neurophysiol 57:1338–1360

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT, Syka J, Buunen TJF, Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV Comparison of monaural and binaural response properties. J Neurophysiol 51:1306–1325.

    PubMed  CAS  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454.

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: Implications for pitch analysis in the time domain. Exp Brain Res 52:333–355.

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner CE (1987) Spatial representation of auditory parameters in the inferior colliculus of the cat. Neurosci Suppl 22:5721.

    Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799–1822.

    PubMed  CAS  Google Scholar 

  • Langner G, Schreiner CE (1989) Orthogonal topographical representation of characteristic and best modulation frequency in the inferior colliculus of the cat. Soc Neurosci Abstr 15:1116.

    Google Scholar 

  • Langner G, Schreiner C, Merzenich MM (1987) Covariation of latency and temporal resolution in the inferior colliculus of the cat. Hear Res 31:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360.

    Article  PubMed  CAS  Google Scholar 

  • Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity. J Neurosci 10:2281–2299.

    PubMed  CAS  Google Scholar 

  • LeVay S, Voigt T (1988) Ocular dominance and disparity coding in cat visual cortex. Visual Neurosci 1:395–414.

    Article  CAS  Google Scholar 

  • Lewald J (1988) Neuronal coding of azimuthal sound direction in the auditory midbrain of the pigeon. Naturwiss 75:470–472.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    Article  PubMed  CAS  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross-correlation: A proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity differences in the brainstem of the barn owl. J Neurosci 8:2665–2676.

    PubMed  CAS  Google Scholar 

  • Masterton RB, Granger EM (1988) Role of the acoustic striae in hearing: contribution of dorsal and intermediate striae to detection of noises and tones. J Neurophysiol 60:1841–1860.

    PubMed  CAS  Google Scholar 

  • Masterton B, Jane JA, Diamond IT (1967) Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus. J Neurophysiol 30:341–359.

    PubMed  CAS  Google Scholar 

  • McAnally KI, Calford MB (1989) Spectral hyperacuity in the cat: neural response to frequency modulated tone pairs. Hear Res 41:237–248.

    Article  PubMed  CAS  Google Scholar 

  • McAnally KI, Calford MB (1990) A psychophysical study of spectral hyperacuity. Hear Res 44:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM (1990) A combined sensitivity for frequency and interaural intensity difference in neurons in the auditory midbrain of the grassfrog. Hear Res 44:35–50.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res 77:397–41.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Andersen RA, Middlebrooks JC (1979) Functional and topographic organization of the auditory cortex. In: Creutzfeldt O, Scheich H, Schreiner CHR (eds) Hearing Mechanisms and Speech. Berlin: Springer-Verlag, pp. 61–75.

    Google Scholar 

  • Merzenich MM, Jenkins WM, Middlebrooks JC (1984) Observations and hypotheses on special organizational features of the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: Wiley, pp. 397–424.

    Google Scholar 

  • Middlebrooks JC (1987) Binaural mechanisms of spatial tuning in the cat’s superior colliculus distinguished using monaural occlusion. J Neurophysiol 57:688–701.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC (1988) Auditory mechanisms underlying a neural code for space in the cat’s superior colliculus. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: Wiley, pp. 431–455.

    Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634.

    PubMed  CAS  Google Scholar 

  • Mills AW (1972) Auditory localization. In: Tobias JV (ed) Foundations of Modern Auditory Theory Vol II. New York: Academic, pp. 303–348.

    Google Scholar 

  • Mogus MA (1972) Single unit responses to frequency-modulated tones and possible relationship to inhibitory effect of two-tone stimuli. Brain Res 43:668–671.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989a) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989b) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164:637–644.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

    PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial receptive fields. J Neurosci 3:2553–2562.

    PubMed  CAS  Google Scholar 

  • Møller AR (1976) Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta Physiol Scand 98:157–167.

    Article  PubMed  Google Scholar 

  • Møller AR, Rees A (1986) Dynamic properties of the responses of single neurons in the inferior colliculus of the rat. Hear Res 24:203–215.

    Article  PubMed  Google Scholar 

  • Moore CN, Casseday JH, Neff WD (1974) Sound localization: The role of the commissural pathways of the auditory system of the cat. Brain Res 82:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Irvine DRF (1980) Development of binaural input, response patterns, and discharge rate in single units of the cat inferior colliculus. Exp Brain Res 38:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Hutchings ME, Addison PD, Semple MN, Aitkin LM (1984a) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. II. Stimulus intensity effects. Hear Res 13:175–188.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Semple MN, Addison PD, Aitkin LM (1984b) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Hear Res 13:159–174.

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol 16:35–51.

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3:237–242.

    PubMed  CAS  Google Scholar 

  • Morest DK (1973) Auditory neurons of the brainstem. Adv Otorhinolaryngol 20:337–356.

    PubMed  CAS  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: Defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236.

    Article  PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert AL, Langford TL (1967) Stimulus coding by medial superior olivary neurons. J Neurophysiol 30:1239–1261.

    PubMed  CAS  Google Scholar 

  • Nelson PG, Erulkar SD, Bryan JS (1966) Responses of units of the inferior colliculus to time-varying acoustic stimuli. J Neurophysiol 29:834–860.

    PubMed  CAS  Google Scholar 

  • Nuetzel JM, Hafter ER (1976) Lateralization of complex waveforms: Effects of fine structure, amplitude, and duration. J Acoust Soc Am 60:1339–1346.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605.

    PubMed  CAS  Google Scholar 

  • Palmer AR (1982) Encoding of rapid amplitude fluctuations by cochlear-nerve fibres in the guinea-pig. Arch Otorhinolaryngol 236:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299:248–249.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1983) Monaural and binaural contributions to an auditory space map in the guinea-pig superior colliculus. In: Klinke R, Hartmann R (eds) Hearing: Physiological Bases and Psychophysics. New York: Springer-Verlag, pp. 230–236.

    Google Scholar 

  • Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to click stimuli: Descriptions for cat. J Acoust Soc Am 52:1669–1677.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981) Responses of single neurons in physiologically defined area AI of cat cerebral cortex: Sensitivity to interaural intensity differences. Hear Res 4:299–307.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol 51:147–163.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hear Res 8:13–28.

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF (1979) Mechanisms of stereopsis in monkey visual cortex. Trends Neurosci 2:199–201.

    Article  Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405.

    PubMed  CAS  Google Scholar 

  • Poggio GF, Poggio T (1984) The analysis of stereopsis. Annu Rev Neurosci 7:379–412.

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF, Talbot WH (1981) Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey. J Physiol (Lond.) 315:469–492.

    CAS  Google Scholar 

  • Poggio GF, Gonzalez F, Krause F (1988) Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J Neurosci 8:4531–4550.

    PubMed  CAS  Google Scholar 

  • Pollak GD (1980) Organizational and encoding features of single neurons in the inferior colliculus of bats. In: Busnel RG, Fis JF (eds) Animal Sonar Systems. New York: Plenum, pp. 549–587.

    Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Berlin: Springer-Verlag.

    Google Scholar 

  • Poussin C, Schlegel P (1984) Directional sensitivity of auditory neurons in the superior colliculus of the bat, Eptesicus fuscus, using free field sound stimulation. J Comp Physiol A 154:253–261.

    Article  Google Scholar 

  • Rees A, Møller AR (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear Res 10:301–330.

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Møller AR (1987) Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hear Res 27:129–143.

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Palmer AR (1988) Rate-intensity functions and their modification by broadband noise for neurons in the guinea pig inferior colliculus. J Acoust Soc Am 83:1488–1498.

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Palmer AR (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. J Acoust Soc Am 85:1978–1994.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973a) Observations on the fine structure of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 147:61–92.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973b) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J Comp Neurol 147:11–60.

    Article  PubMed  CAS  Google Scholar 

  • Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465.

    PubMed  CAS  Google Scholar 

  • Rose JE, Greenwood DD, Goldberg JM, Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J Neurophysiol 26:294–320.

    Google Scholar 

  • Rose JE, Gross NB, Geisler CD, Hind JE (1966) Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol 29:288–314.

    PubMed  CAS  Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182:661–680.

    Article  PubMed  CAS  Google Scholar 

  • Roth GL, Kochhar RK, Hind JE (1980) Interaural time differences: Implications regarding the neurophysiology of sound localization. J Acoust Soc Am 68:1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA (1973) Response to noise of auditory nerve fibers in the squirrel monkey. J Neurophysiol 36:569–587.

    PubMed  CAS  Google Scholar 

  • Saint Marie RL, Ostapoff E-M, Morest DK, Wenthold RJ (1989) Glycine-immunoreactive projection of the cat lateral superior olive: Possible role in midbrain ear dominance. J Comp Neurol 279:382–396.

    Article  Google Scholar 

  • Schalk TB, Sachs MB (1980) Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67:903–913.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1974) Neuropil organization in the superior olive of the cat. Exp Neurol 43:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel PA, Jen PH-S, Singh S (1988) Auditory spatial sensitivity of inferior collicular neurons of echolocating bats. Brain Res 456:127–138.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE, Langner G (1988a) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Langner G (1988b) Coding of temporal patterns in the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurological Bases of Hearing. New York: Wiley, pp. 337–361.

    Google Scholar 

  • Semple MN, Aitkin LM (1979) Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. J Neurophysiol 42:1626–1639.

    PubMed  CAS  Google Scholar 

  • Semple MN, Kitzes LM (1985) Single-unit responses in the inferior colliculus: Different consequences of contralateral and ipsilateral auditory stimulation. J Neurophysiol 53:1467–1482.

    PubMed  CAS  Google Scholar 

  • Semple MN, Kitzes LM (1987) Binaural processing of sound pressure level in the inferior colliculus. J Neurophysiol 57:1130–1147.

    PubMed  CAS  Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hear Res 10:203–215.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1974) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1861.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A, Henkel CK (1987) Banding of lateral superior olivary nucleus afferents in the inferior colliculus: A possible substrate for sensory integration. J Comp Neurol 266:519–534.

    Article  PubMed  CAS  Google Scholar 

  • Smith RL (1988) Encoding of sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley pp. 243–274.

    Google Scholar 

  • Sparks DL (1988) Neural cartography: Sensory and motor maps in the superior colliculus. Brain Behav Evol 31:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    Article  PubMed  CAS  Google Scholar 

  • Stiebler I (1986) Tone-threshold mapping in the inferior colliculus of the house mouse. Neurosci Lett 65:336–340.

    Article  PubMed  CAS  Google Scholar 

  • Stillman RD (1972) Responses of high-frequency inferior colliculus neurons to interaural intensity differences. Exp Neurol 36:118–126.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1977) Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Manabe T (1982) Neural basis of amplitude-spectrum representation in auditory cortex of the mustached bat. J Neurophysiol 47:225–255.

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1973) Coding and processing in the auditory systems of FM-signal-producing bats. J Acoust Soc Am 54:174–190.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: Correlation with functional response properties. J Neurophysiol 53:201–216.

    PubMed  CAS  Google Scholar 

  • Sullivan WE (1986) Processing of acoustic temporal patterns in barn owls and echolocating bats: Similar mechanisms for the generation of neural place representations of auditory space. Brain Behav Evol 28:109–121.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci USA 83:8400–8404.

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Jen PH-S (1987) Pinna position affects the auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Hear Res 27:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6:3413–3422.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Konishi M (1988a) Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT, Konishi M (1988b) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.

    PubMed  CAS  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brainstem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 41:1183–1202.

    PubMed  CAS  Google Scholar 

  • Tobias JV, Zerlin S (1959) Lateralization threshold as a function of stimulus duration. J Acoust Soc Am 31:1591–1594.

    Article  Google Scholar 

  • Tsuchitani C (1982) Discharge patterns of cat lateral superior olivary units to ipsilateral tone-burst stimuli. J Neurophysiol 47:479–500.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1988a) The inhibition of cat lateral superior olive unit excitatory responses to binaural tone-bursts. I. The transient chopper response. J Neurophysiol 59:164–183.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1988b) The inhibition of cat lateral superior olive unit excitatory responses to binaural tone-bursts. II. The sustained discharges. J Neurophysiol 59:184–211.

    PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1969) Stimulus level of dichotically presented tones and cat superior olive S-segment cell discharge. J Acoust Soc Am 46:979–988.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchitani C, Johnson DH (1985) The effects of ipsilateral tone-burst stimulus level on the discharge patterns of cat lateral superior olivary units. J Acoust Soc Am 77:1484–1496.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF (1983) Auditory intensity discrimination at high frequencies in the presence of noise. Science 221:1206–1208.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF (1988a) Intensity coding and the dynamic range problem. Hear Res 34:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF (1988b) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: Wiley, pp. 213–241.

    Google Scholar 

  • Volman SF, Konishi M (1989) Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl. J Neurosci 9:3083–3096.

    PubMed  CAS  Google Scholar 

  • Wagner H, Takahashi T, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116.

    PubMed  CAS  Google Scholar 

  • Webster DB, Popper AN, Fay RR, eds (1992) Springer Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Wenstrup JJ, Fuzessery ZM, Pollak GD (1988a) Binaural neurons in the mustache bat’s inferior colliculus. I. Responses of 60-kHz EI units to dichotic sound stimulation. J Neurophysiol 60:1369–1383.

    PubMed  CAS  Google Scholar 

  • Wenstrup J, Fuzessery ZM, Pollak GD (1988b) Binaural neurons in the mustache bat’s inferior colliculus. II. Determinants of spatial responses among 60-kHz EI units. J Neurophysiol 60:1384–1404.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1985) A functional organization of binaural responses in the inferior colliculus. Hear Res 17:191–195.

    Article  PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1986) Binaural response organization within a frequency-band representation of the inferior colliculus: Implications for sound localization. J Neurosci 6:962–973.

    PubMed  CAS  Google Scholar 

  • Wiener FM (1947) On the diffraction of a progressive sound wave by the human head. J Acoust Soc Am 19:143–146.

    Article  Google Scholar 

  • Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Am 54:407–416.

    Article  PubMed  CAS  Google Scholar 

  • Winslow RL, Sachs MB (1988) Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hear Res 35:165–190.

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49:674–685.

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1984) Interaural intensity difference sensitivity based on facilitatory binaural interaction in cat superior colliculus. Hear Res 16:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: Implications for auditory spatial representation. J Neurophysiol 54:185–211.

    PubMed  CAS  Google Scholar 

  • Wong D (1984) Spatial tuning of auditory neurons in the superior colliculus of the echolocating bat, Myotis lucifugus. Hear Res 16:261–270.

    Article  PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: Wiley, pp. 385–430.

    Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983a) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50:1000–1019.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983b) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J Neurophysiol 50:1020–1042.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1984) Neuronal mechanisms of binaural interaction. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: Wiley pp. 263–313.

    Google Scholar 

  • Yin TCT, Chan JCK, Carney LH (1987) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus, III. Evidence for cross-correlation. J Neurophysiol 58:562–583.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK, Irvine DRF (1986) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. I. Responses to wideband noise. J Neurophysiol 55:280–300.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK, Kuwada S (1983) Characteristic delays and their topographical distribution in the inferior colliculus of the cat. In: Webster WR, Aitkin LM (eds) Mechanisms of Hearing. Clayton, Vic: Monash University, pp. 94–99.

    Google Scholar 

  • Yin TCT, Hirsch JA, Chan JCK (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. II. A model of interaural intensity sensitivity. J Neurophysiol 53:746–758.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S, Sujaku Y (1984) Interaural time sensitivity of high-frequency neurons in the inferior colliculus. J Acoust Soc Am 76:1401–1410.

    Article  PubMed  CAS  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency specific projections of individual neurons in chick brain stem auditory nuclei. J Neurosci 3:1373–1378.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Irvine, D.R.F. (1992). Physiology of the Auditory Brainstem. In: Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2838-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2838-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97801-7

  • Online ISBN: 978-1-4612-2838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics