Skip to main content

Adaptations of Basic Structures and Mechanisms in the Cochlea and Central Auditory Pathway of the Mustache Bat

  • Chapter
The Evolutionary Biology of Hearing

Abstract

The ability of bats to orient and successfully avoid obstacles in total darkness has been of interest to scientists for more than two centuries. Although audition has always been strongly associated with this ability, general acceptance of orientation by sound came only around 1940 with the elegant studies of Griffin and his colleagues (Griffin and Galambos 1941; Galambos and Griffin 1942; an excellent summary of this work is provided in Griffin 1958). They showed that bats are not only able to navigate through complex environments but they also can detect, identify and locate prey in the night sky by emitting loud ultrasonic calls and listening to the echoes that are reflected from nearby insects. Griffin (1944) coined the term echo-location to describe this form of biological sonar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385:207–242.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.

    PubMed  CAS  Google Scholar 

  • Aitkin LM (1985) The Auditory Midbrain: Structure and Function in the Central Auditory Pathway. Clifton, New Jersey: Humana Press.

    Google Scholar 

  • Bateman GC, Vaughan TA (1974) Nightly activities of mormoopid bats. J Mammal 55:45–65.

    Google Scholar 

  • Bishop AL, Henson OW Jr (1988) The efferent auditory system in Doppler compensating bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 307–310.

    Google Scholar 

  • Blauert J (1969/1970) Sound localization in the median plane. Acoustica 22:205–213.

    Google Scholar 

  • Bodenhamer RD, Pollak GD (1983) Response characteristics of single units in the inferior colliculus of mustache bats to sinusoidally frequency modulated signals. J Comp Physiol 153:67–79.

    Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:445–454.

    Google Scholar 

  • Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to the central nucleus of the inferior colliculus in the cat. J Comp Neurol 97:705–722.

    Google Scholar 

  • Bullock TH, Grinnell AD, Ikezono E, Kamuda K, Katsuki Y, Sato O, Suga N, Yanagisawa R (1968) Elec-trophysiological studies of central auditory mechanisms in cetaceans. Z Verg Physiol 59:117–156.

    Google Scholar 

  • Butler RA (1974) Does tonotopy subserve the perceived elevation of a sound? Fed Proc 33:1920–1923.

    PubMed  CAS  Google Scholar 

  • Cotzin M, Dallenbach KM (1950) Facial vision: the role of pitch and loudness in the perception of obstacles by the blind. Am J Psychol 63:485–515.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol (London) 312:377–412.

    CAS  Google Scholar 

  • Ehert G, Frankenreiter M (1977) Quantitative analysis of cochlear structures in the housemouse in relation to mechanisms of acoustical information processing. J Comp Physiol 122:65–85.

    Google Scholar 

  • FitzPatrick KA (1975) Cellular architecture and topo-graphic organization of the inferior colliculus of the squirrel monkey. J Comp Neurol 164:185–208.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM (1986) Speculations on the role of frequency in sound localization. Brain Behav Evol 28: 95–108.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1984) Neural mechanisms of sound localization in an echolocating bat. Science 225:725–728.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1985) Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. J Neurophysiol 54:757–781.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Wenstrup JJ, Pollak GD (1985) A representation of horizontal sound location in the inferior colliculus of the mustache bat (Pteronotus p. parnellii). Hearing Res 20:85–89.

    CAS  Google Scholar 

  • Fuzessery ZM, Wenstrup JJ, Pollak GD (1990) Determinants of horizontal sound location selectivity of binaurally excited neurons in the inferior colliculus of an isofrequency region of the mustache bat inferior colliculus. J Neurophysiol 63:1128–1147.

    PubMed  CAS  Google Scholar 

  • Galambos R, Griffin DR (1942) Obstacle avoidance by flying bats. J Exp Zool 89:475–490.

    Google Scholar 

  • Goldberg JM (1975) Physiological studies of the auditory nuclei of the pons. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V. Auditory System, Part 2. New York: Springer-Verlag, p. 109.

    Google Scholar 

  • Goldman LJ, Henson OW Jr (1977) Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav Ecol Sociobiol 2:411–419.

    Google Scholar 

  • Griffin DR (1944) Echolocation by blind men and bats. Science 100:589–590.

    PubMed  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the Dark. Yale University Press, New Haven, Conn.

    Google Scholar 

  • Griffin DR, Galambos R (1941) The sensory basis of obstacle avoidance by flying bats. J Exp Zool 86: 481–506.

    Google Scholar 

  • Grinnell AD (1963a) The neurophysiology of audition in bats: Intensity and frequency parameters. J Physiol 167:38–66.

    PubMed  CAS  Google Scholar 

  • Grinnell AD (1963b) The neurophysiology of audition in bats: Temporal parameters. J Physiol 167:67–96.

    PubMed  CAS  Google Scholar 

  • Grinnell AD (1963c) The neurophysiology of audition in bats: Directional localization and binaural interactions. J Physiol 167:97–113.

    PubMed  CAS  Google Scholar 

  • Grinnell AD (1963d) The neurophysiology of audition in bats: Resistance to interference. J Physiol 167: 114–127.

    PubMed  CAS  Google Scholar 

  • Grinnell, AD (1967) Mechanisms of overcoming interference in echolocating animals. In: Busnel R-G (ed) Animal Sonar Systems, Vol. I. Jouy-en-Josas 78, France: Laboratoire de Physiologie Acoustique, p. 451.

    Google Scholar 

  • Grinnell AD (1970) Comparative neurophysiology of neotropical bats employing different echolocation signals. Z Vergl Physiol 68:117–153.

    Google Scholar 

  • Grinnell AD (1973) Neural processing mechanisms in echolocating bats correlated with differences in emitted sounds. J Acoust Soc Am 54:147–156.

    PubMed  CAS  Google Scholar 

  • Grinnell AD, Grinnell VS (1965) Neural correlates of vertical localization by echolocating bats. J Physiol 181:830–851.

    PubMed  CAS  Google Scholar 

  • Grinnell AD, Hagiwara S (1972a) Adaptations of the auditory nervous system for echolocation: Studies of New Guinea bats. Z Vergl Physiol 76:41–81.

    Google Scholar 

  • Grinnell AD, Hagiwara S (1972b) Studies of auditory neurophysiology in non-echolocating bats and adaptations for echolocation in one genus of Rousettus. Z Vergl Physiol 76:82–96.

    Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985) Inter-aural time and intensity coding in the superior olivary complex and inferior colliculus of the echolocating bat, Molossus ater. J Neurophysiol 53:89–109.

    PubMed  CAS  Google Scholar 

  • Henson MM (1978) The basilar membrane of the bat, Pteronotus parnellii. Anat Ree 153:143–158.

    CAS  Google Scholar 

  • Henson MM, Henson OW Jr, Jenkins DB (1984) The attachment of the spiral ligament to the cochlear wall: Anchoring cells and the creation of tension. Hearing Res 16:231–242.

    CAS  Google Scholar 

  • Henson MM, Burridge K, Fitzpatrick DC, Jenkins DB, Pillsbury HC, Henson OW Jr (1985) Immunocyto-chemical localization of contractile and contraction associated proteins in the spiral ligament of the cochlea. Hearing Res 20:207–214.

    CAS  Google Scholar 

  • Henson OW Jr (1967) The perception and analysis of biosonar signals by bats. In: Busnel R-G (ed) Animal Sonar Systems. Vol. II. France: Lab Physiol Acoust, Jouy-en-Josas 78, p. 949.

    Google Scholar 

  • Henson OW Jr (1970) The ear and audition. In: Wimsatt WA (ed) The Biology of Bats, Vol. 2. New York: Academic Press, pp. 181–263.

    Google Scholar 

  • Henson OW Jr, Pollak GD (1973) A technique for the chronic implantation of electrodes in the cochlea of bats. Physiol Behav 8:1185–1187.

    Google Scholar 

  • Henson OW Jr, Henson MM, Kobler JB, Pollak GD (1980) The constant frequency component of the biosonar signals of the bat, Pteronotus p. parnellii. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, p. 913.

    Google Scholar 

  • Henson OW Jr, Pollak GD, Kobler JB, Henson MM, Goldman LJ (1982) Cochlear microphonics elicited by biosonar signals in flying bats. Pteronotus p. parnellii. Hearing Res 7:127–147.

    Google Scholar 

  • Henson OW Jr, Schuller G, Vater M (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii). J Comp Physiol 157: 587–607.

    Google Scholar 

  • Henson OW Jr, Henson MM (1988) Morphometric analysis of cochlear structures in the mustached bat, Pteronotus parnellii. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 301–306.

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Ferrier Lecture Proc RSoc Lond 198:1–59.

    CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988a) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bull frog, Rana catesbeiana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988b) A model for electrical resonance and frequency tuning in saccular hair cells of the bull frog, Rana catesbeiana. J Physiol 400:275–297.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. Progress in Sensory Physiology 7, Autrum H, Ottoson D (eds) Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Kellogg W (1961) Porpoises and Sonar. Chicago: University of Chicago Press.

    Google Scholar 

  • Kössl M, Vater M (1985a) Evoked acoustic emissions and cochlear microphonics in the mustache bat, teronotus parnellii. Hearing Res 19:157–170.

    Google Scholar 

  • Kössl M, Vater M (1985b) The frequency place map of the bat, Pteronotus parnellii. J Comp Physiol 157: 687–697.

    Google Scholar 

  • Kössl M, Vater M (1990) Resonance phenomena in the cochlea of the mustache bat and their contribution to neuronal response characteristics in the cochlear nucleus. J Comp Physiol (in press).

    Google Scholar 

  • Lewis R, Hudspeth AJ (1983) Voltage and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541.

    PubMed  CAS  Google Scholar 

  • Link A, Marimuthu G, Neuweiler G (1986) Movement as a specific stimulus for prey catching behavior in rhinolophid and hipposiderid bats. J Comp Physiol 159:403–413.

    Google Scholar 

  • Merzenich MM, Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res 77:397–415.

    PubMed  CAS  Google Scholar 

  • Möhres FP, Kulzer E (1956) Uber die Orientatierung der Flughunde (Chiroperta, Pteropodidae). Z Vergl Physiol 38:1–29.

    Google Scholar 

  • Musicant AD, Butler RA (1985) Influence of monaural spectral cues on binaural localization. J Acoust Soc Am 77:202–208.

    PubMed  CAS  Google Scholar 

  • Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus fermmequinum. J Comp Physiol 115: 119–133.

    Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: Peripheral processing. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, p. 519.

    Google Scholar 

  • Neuweiler G 1983) Echolocation and adaptivity to ecological constraints. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology: Roots and Growing Pains. Berlin Heidelberg New York Tokyo: Springer-Verlag, p. 280.

    Google Scholar 

  • Neuweiler G (1984a) Auditory basis of echolocation in bats. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cam-bridge: Cambridge University Press, p. 115.

    Google Scholar 

  • Neuweiler G (1984b) Foraging, echolocation and audition in bats. Naturwissenschaften 71:46–455.

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev (in press).

    Google Scholar 

  • Novick A (1958) Orientation in paleotropical bats: II. Megachiroptera, J Exp Zool 137:443–462.

    CAS  Google Scholar 

  • Novick A, Vaisnys JR (1964) Echolocation of flying insects by the bat, Chilonycteris parnellii. Biol Bull 127:478–488.

    Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222: 237–264.

    PubMed  CAS  Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of frog, Rana temporaria. Hearing Res 27:75–83.

    CAS  Google Scholar 

  • Pollak GD (1980) Organizational and encoding features of single neurons in the inferior colliculus of bats. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, p. 549.

    Google Scholar 

  • Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the pure tone bat, Chilonycteris parnellii parnellii. Science 176:66–68.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Henson OW Jr, Johnson R (1979) Multiple specializations in the peripheral auditory system of the CF-FM bat, Pteronotus parnellii. J Comp Physiol 131:255–266.

    Google Scholar 

  • Pollak GD, Schuller G (1981) Tonotopic organization and encoding features of single units in the inferior colliculus of horseshoe bats: Functional implications for prey identification. J Neurophysiol 45:208–226.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Bodenhamer RD (1981) Specialized characteristics of single units in inferior colliculus of mustache bat: frequency representation, tuning, and dis-charge patterns. J Neurophysiol 46:605–619.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Bodenhamer RD, Zook JM (1983) Cochleo-topic organization of the mustache bat’s inferior colliculus. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. New York: Plenum Press, pp. 925–935.

    Google Scholar 

  • Pollak GD, Wenstrup JJ, Fuzessery ZM (1986) Auditory processing in the mustache bat’s inferior colliculus. Trends in Neurosci 9:556–561.

    Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Pumphrey RJ (1948) The sense organs of birds. Ibis 90:171–199.

    Google Scholar 

  • Pye A (1965) The auditory apparatus of the Heteromyidae (Rodentia, Sciuromorpha). J Anat 99:161–174.

    PubMed  CAS  Google Scholar 

  • Rice CE (1967) Human echo perception. Science 155: 656–664.

    PubMed  CAS  Google Scholar 

  • Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: Transduction, tuning and transmission in the inner ear. Ann Rev Cell Biol 4:63–92.

    PubMed  CAS  Google Scholar 

  • Rockel AS, Jones EG (1973) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J Comp Neurol 147:11–60.

    CAS  Google Scholar 

  • Ross LS, Pollak GD, Zook JM (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270: 488–505.

    PubMed  CAS  Google Scholar 

  • Ross LS, Pollak GD (1989) Differential projections to aural regions in the 60 kHz isofrequency contour of the mustache bat’s inferior colliculus. J Neurosci 9:2819–2834.

    PubMed  CAS  Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182:661–680.

    PubMed  CAS  Google Scholar 

  • Schuller G (1979a) Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the CF-FM bat, Rhinolophus ferrumequi-num. Exp Brain Res 34:117–132.

    PubMed  CAS  Google Scholar 

  • Schuller G (1979b) Vocalization influences auditory processing in collicular neurons of the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 132: 39–46.

    Google Scholar 

  • Schuller G (1984) Natural ultrasonic echoes form wing beating insects are coded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 155:121–128.

    Google Scholar 

  • Schuller G, Beuter K, Schnitzler H-U (1974) Response to frequency shifted artificial echoes in the bat, Rhinolophus ferrumequinum. J Comp Physiol 89:275–286.

    Google Scholar 

  • Schuller G, Pollak GD (1979) Disproportionate frequency representation in the inferior colliculus of horseshoe bats: Evidence for an “acoustic fovea”. J Comp Physiol 132:47–54.

    Google Scholar 

  • Schnitzler HU (1967) Discrimination of thin wires by flying horseshoe bats (Rhinolophidae). In: Busnel, R-G (ed) Animal Sonar Systems, Vol. I. Jouy-en-Josas 78, France: Laboratoire de Physiologie Acoustique, p. 69.

    Google Scholar 

  • Schnitzler H-U (1970) Comparison of echolocation behavior in Rhinolophus ferrumequinum and Chilo-nycteris rubiginosa. Bijdr Dierkd 40:77–80.

    Google Scholar 

  • Schnitzler H-U, Flieger E (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J Comp Physiol 153:385–391.

    Google Scholar 

  • Schnitzler H-U, Ostwald J (1983) Adaptations for the detection of fluttering insects by echolocation in horseshoe bats. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. New York: Plenum Press, p. 801.

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology: Roots and Growing Pains. Berlin Heidelberg New York Tokyo: Springer-Verlag, p. 235.

    Google Scholar 

  • Semple MN, Aitkin LM (1979) Representation of sound frequency and laterality by units in the central nucleus of the cat’s inferior colliculus. J Neurophysiol 42: 1626–1639.

    PubMed  CAS  Google Scholar 

  • Serviere J, Webster WR, Calford MB (1984) Iso-frequency labelling revealed by a combined [14C]-2-de-oxyglucose, electrophysiological and horseradish peroxidase study of the inferior colliculus of the cat. J Comp Neurol 228:463–477.

    PubMed  CAS  Google Scholar 

  • Simmons JA (1971) The sonar receiver of the bat. Ann NY Acad Sei 188:161–184.

    CAS  Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Amer 54:157–173.

    CAS  Google Scholar 

  • Simmons JA (1974) Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. J Acoust Soc Amer 56:672–682.

    CAS  Google Scholar 

  • Simmons JA, Howell DJ, Suga N (1975) Information content of bat sonar echoes. Amer Sei 63:204–215.

    CAS  Google Scholar 

  • Suga N (1964a) Recovery cycles and responses to fre-quency modulated tone pulses in auditory neurons of echolocating bats. J Physiol 175:50–80.

    PubMed  CAS  Google Scholar 

  • Suga N (1964b) Single unit activity in the cochlear nucleus and inferior colliculus of echolocating bats. J Physiol 172:449–474.

    PubMed  CAS  Google Scholar 

  • Suga N (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Fed Proc 37:2342–2354.

    PubMed  CAS  Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: John Wiley & Sons, pp. 315.

    Google Scholar 

  • Suga N, Simmons JA, Jen PHS (1975) Peripheral specializations for fine frequency analysis of Doppler-shifted echoes in the CF-FM bat, Pteronotus parnellii. J Exp Biol 63:161–192.

    PubMed  CAS  Google Scholar 

  • Suga N, Neuweiler G, Moller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125.

    Google Scholar 

  • Suga N, Jen PHS (1977) Further studies on the peripheral auditory system of “CF-FM” bats specialized for the fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232.

    PubMed  CAS  Google Scholar 

  • Supa M, Cotzin M, Dallenbach KM (1944) “Facial vision”. The perception of obstacles by the blind. Am J Psychol 57:133–183.

    Google Scholar 

  • Sur M, Merzenich MM, Kass JH (1980) Magnification, receptive field area and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311.

    PubMed  CAS  Google Scholar 

  • Trappe M, Schnitzler H-U (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193–194.

    Google Scholar 

  • Vater M (1987) Narrow-band frequency analysis in bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent Advances in the Study of Bats. Cambridge: Cambridge University Press, p. 200.

    Google Scholar 

  • von der Emme G (1988) Greater horseshoe bats learn to discriminate simulated echoes of insects fluttering with different wingbeat rates. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 495–500.

    Google Scholar 

  • Webster DB (1961) The ear apparatus of the kangaroo rat, Dipodomys. Amer J Anat 108:123–148.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1985) A functional organization of binaural responses in the inferior colliculus. Hearing Res 17:191–195.

    CAS  Google Scholar 

  • Wenstrup JJ, Fuzessery ZM, Pollak GD (1986a) Bin-aural response organization within a frequency-band representation of the inferior colliculus: Implications for sound localization. J Neurosci 6:692–973.

    Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1986b) Organization of IID sensitivity in isofrequency representations of the mustache bat’s inferior colliculus. IUPS Symposium on Hearing, University of California, San Francisco, CA, Abstract 415.

    Google Scholar 

  • Wenstrup JJ, Fuzessery ZM, Pollak GD (1988a) Binaural neurons in the mustache bat’s inferior colliculus: I. Responses of 60 kHz EI units to dichotic sound stimulation. J Neurophysiol 60:1369–1383.

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Fuzessery ZM, Pollak GD (1988b) Binaural neurons in the mustache bat’s inferior colliculus: II. Determinants of spatial responses among 60 kHz EI units. J Neurophysiol 60:1384–1404.

    PubMed  CAS  Google Scholar 

  • Zakon H (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: John Wiley & Sons, pp. 103–156.

    Google Scholar 

  • Zook JM, Casseday JH (1982) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 207:14–28.

    PubMed  CAS  Google Scholar 

  • Zook JM, Winer JA, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: Correlation of single unit properties and neuronal architecture. J Comp Neurol 231: 530–546.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol 237:307–324.

    PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1987) Convergence of ascending pathways at the inferior colliculus of the mustache bat, Pteronotus parnellii. J Comp Neurol 261:347–361.

    PubMed  CAS  Google Scholar 

  • Zook JM, Leake PA (1989) Correlation of cochlear morphology specializations with frequency representation in the cochlar nucleus and superior olive of the mustache bat, Pteronotus parnellii. J Comp Neurol 290:243–261.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Pollak, G.D. (1992). Adaptations of Basic Structures and Mechanisms in the Cochlea and Central Auditory Pathway of the Mustache Bat. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_45

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics