Skip to main content

Hearing in Transitional Mammals: Predictions from the Middle-Ear Anatomy and Hearing Capabilities of Extant Mammals

  • Chapter
The Evolutionary Biology of Hearing

Abstract

When the ancestors of terrestrial vertebrates moved from a water to a land environment they were confronted with the problem of sensing airborne sounds. One of the evolutionary response to this problem was the development of middle ears, which enabled more efficient collection of acoustic power from the air and transmission of the collected power to the inner ear (Wever and Lawrence 1954; Killion and Dallos 1979; Dallos 1984; Rosowski, Carney, Lynch, and Peake 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Johnstone BM (1972) Middle-ear function in a monotreme: the echidna (Tachyglossus aculeatus). J Exp Zool 180:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. Journal of Morphology 147:403–437.

    Article  PubMed  CAS  Google Scholar 

  • Allin EF (1986) The auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N III, MacLean PDM, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Washington, DC: Smithsonian Institution Press, pp. 283–294.

    Google Scholar 

  • Beranek LL (1954) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Buunen TJF, Vlaming MSMG (1981) Laser-Doppler velocity meter applied to tympanic membrane vibrations in cat. J Acoust Soc Am 69:744–750.

    Article  PubMed  CAS  Google Scholar 

  • Crompton AW, Jenkins Jr FA (1973) Mammals from reptiles: A review of mammalian origins. Annual Rev Earth Planet Sei 1:131–153.

    Article  Google Scholar 

  • Crompton AW, Jenkins Jr FA (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-Thirds of Mammalian History. Berkeley, CA: University of California Press, pp. 59–73.

    Google Scholar 

  • Crompton AW, Parker P (1978) Evolution of the mammalian masticatory apparatus. Am Sei 66:192–201.

    CAS  Google Scholar 

  • Dallos P (1970) Low frequency auditory characteristics: species dependence. J Acoust Soc Am 48: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1973) The Auditory Periphery. New York: Academic Press.

    Google Scholar 

  • Dallos P (1984) Peripheral mechanisms of hearing. In: Darian-Smith, I (ed) Handbook of Physiology, Section 1: the Nervous System, Volume III Sensory Processes, Part 2. Bethesda, MD: American Physiological Society, pp. 595–638.

    Google Scholar 

  • Dooling RJ (1980) Behavior and psychophysics of hearing in birds. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 261–288.

    Google Scholar 

  • Dooling RJ, Saunders JC (1975) Hearing in the parakeet (Melopsittacus undulatus): Absolute thresholds, critical ratios, frequency-difference limens and vocalizations. J Comp Physiol Psychol 88:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Frankenreiter M (1977) Quantitative analysis of cochlear structures in the house mouse in relation to mechanics of acoustical information processing. J Comp Physiol (A) 122:65–85.

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: a Psychophysics Databook. Winnetka, Illinois: Hill-Fay Associates.

    Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschliesslich des Menschen. Säugetierkundl. Mitteilungen (München) 21:131–239.

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:3–69.

    PubMed  CAS  Google Scholar 

  • Gates GR, Saunders JC, Bock GR, Aitkin LM, Elliott MA (1974) Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J Acoust Soc Am 56:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Goode RL, Nakamura K, Gyo K, Aritomo H (1989) Comments on “Acoustic transfer characteristics in human middle ears studied by a SQUID magnitometer method”. J Acoust Soc Am 86:2446–2449.

    Article  PubMed  CAS  Google Scholar 

  • Graybeal A, Rosowski JJ, Ketten DR, Crompton AW (1989) Inner-ear structure in Morganucodon, an early Jurassic mammal. Zool J Linnean Soc 96:107–117.

    Article  Google Scholar 

  • Gummer AW, Smolders JWT, Klinke R (1989) Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Hearing Res 39:1–14.

    Article  CAS  Google Scholar 

  • Heffner HE, Masterton RB (1980) Hearing in Glires: domestic rabbit, cotton rat, feral house mouse and kangaroo rat. J Acoust Soc Am 68:1584–1599.

    Article  Google Scholar 

  • Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: The Auditory System V/l, New York: Springer-Verlag, pp. 39–110.

    Google Scholar 

  • Hopson JA (1966) The origin of the mammalian middle ear. Am Zoologist 6:437–450.

    CAS  Google Scholar 

  • Hunt RM, Korth WW (1980) The auditory region of Dermoptera: morphology and function relative to other living mammals. J Morphol 164:167–211.

    Article  Google Scholar 

  • Jenkins Jr FA, Crompton WA (1979) Triconodonta. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-Thirds of Mammalian History. CA: University of California Press, Berkeley, pp. 74–90.

    Google Scholar 

  • Jerison HJ (1973) Evolution of Brain and Intelligence. New York: Academic Press.

    Google Scholar 

  • Kelly JB, Masterton RB (1980) Auditory sensitivity of the albino rat. J Comp Physiol Psychol 91:930–936.

    Article  Google Scholar 

  • Kermack DM, Kermack KA (1984) The Evolution of Mammalian Characters. London: Croom Helm.

    Google Scholar 

  • Kermack KA, Musset F (1983) The ear in mammal-like reptiles and early mammals. Acta Palaeontol Polon 28:148–158.

    Google Scholar 

  • Kermack KA, Musset F, Rigney HW (1973) The lower jaw of Morganucodon. Zool J Linnean Soc 53:87–175.

    Article  Google Scholar 

  • Kermack KA, Musset F, Rigney HW (1981) The skull of Morganucodon. Zool J Linnean Soc 71:1–158.

    Article  Google Scholar 

  • Ketten DR (1984) Correlations of morphology with frequency for Odontocete cochlea: systematics and topology. PhD Thesis, The Johns Hopkins University, Baltimore.

    Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-average holography. J Acous Soc Am 51:1904–1920.

    Article  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1978) Physical and physiological principles controlling auditory sensitivity in primates. In: Noback R (ed) Neurobiology of Primates. New York: Plenum Press, pp. 23–52.

    Google Scholar 

  • Killion MC, Dallos P (1979) Impedance matching by the combined effects of the outer and middle ear. J Acoust Soc Am 66:599–602.

    Article  Google Scholar 

  • Kirikae I (1960) The Structure and Function of the Middle Ear. University of Tokyo Press.

    Google Scholar 

  • Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of Gerbilline rodents. J Morphol 138:41–120.

    Article  PubMed  CAS  Google Scholar 

  • Lynch TJ III, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130.

    Article  PubMed  Google Scholar 

  • Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230:506–509.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1972a) The middle ear of the Tokay Gecko. J Comp Physiol 81:239–250.

    Article  Google Scholar 

  • Manley GA (1972b) A review of some current concepts of the functional evolution of the ear. Evolution 26: 608–621.

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of reptiles. Prog Sens Physiol 2:49–134.

    Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle-ear function in the guinea pig. J Acoust Soc Am 56:571–576.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Irvine DRF, Johnstone BM (1972) Frequency response of bat tympanic membrane. Nature 237:112–113.

    Article  Google Scholar 

  • Masterton B, Heffner H, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45: 966–985.

    Article  PubMed  CAS  Google Scholar 

  • Parrington FR (1949) Remarks on a theory of evolution of the tetrapod middle ear. J Laryngol Otol 63:580–595.

    Article  PubMed  CAS  Google Scholar 

  • Parrington FR (1979) The evolution of the mammalian middle and outer ears: A personal view. Biolog Rev 54:369–387.

    Article  CAS  Google Scholar 

  • Peterson EA, Levison M, Lovett S, Feng A, Dunn SH (1974) The relation between middle ear morphology and peripheral auditory function in rodents, I: Sciuridae. J Audit Res 14:227–242.

    CAS  Google Scholar 

  • Pye A, Hinchcliffe R (1976) The comparative anatomy of the ear. In: Hinchcliffe R, Harrison D (eds) Sei Found Otolaryngol, pp. 184–202.

    Google Scholar 

  • Ravicz ME (1990) Acoustic impedance of the gerbil ear. MS Thesis, Boston University, Boston MA.

    Google Scholar 

  • Relkin EM, Saunders JC (1980) Displacement of the malleus in neonatal golden hamsters. Acta Otolaryngol 90:6–15.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Carney LH, Lynch TJ III, Peake WT (1986) The effectiveness of the external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms, New York: Springer-Verlag, pp. 3–12.

    Google Scholar 

  • Rosowski JJ, Carney LH, Peake WT (1988) The radiation impedance of the external ear of cat: Measurements and applications. Journal of Acoustical Society of America 84:1695–1708.

    Article  CAS  Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linnean Soc 101:131–168.

    Article  Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III, Leong R, Weiss TF (1985) A model for signal transmission in an ear having free-standing stereocilia. II. Macromechanical stage. Hearing Research 20:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle ear response in the chinchilla and its relation-ship to mechanics at the base of cochlea. J Acoust Soc Am 87:1612–1629.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC (1985) Auditory structure and function in the bird middle ear: An evaluation by SEM and capacitive probe. Hearing Res 18:253–268.

    Article  CAS  Google Scholar 

  • Saunders JC, Johnstone BM (1972) A comparative analysis of middle-ear function in nonmammalian vertebrates. Acta Otolaryngol 73:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Relkin ER, Rosowski JJ, Bahl C (1986) Changes in middle-ear input admittance during post-natal auditory development in chicks. Hearing Res 24:227–235.

    Article  CAS  Google Scholar 

  • Saunders JC, Summers RM (1982) Auditory structure and function in the mouse middle ear: An evaluation by SEM and capacitive probe. J Comp Physiol A 146: 517–525.

    Article  Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/l, Auditory System. New York: Springer-Verlag, pp. 455–490.

    Google Scholar 

  • Shaw EAG, Stinson MR (1980) The human external and middle ear: Models and concepts. In: deBoer E, Viergever MA (eds) Mechanics of Hearing. Delft University Press, pp. 3–10.

    Google Scholar 

  • Stebbins WC (1970) Animal Psychophysics: The Design and Conduct of Sensory Experiments. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Stephens CB (1972) Development of the middle and inner ear in the Golden hamster (Mesocricetus auratus): A detailed description to establish a norm for physiological study of congenital deafness. Act Otolaryngology Supplementum Number 296: pp. 1–51.

    CAS  Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233.

    Article  PubMed  CAS  Google Scholar 

  • Tumarkin A (1955) On the evolution of the auditory conducting apparatus: a new theory based on functional considerations. Evolution 9:221–242.

    Article  Google Scholar 

  • Tumarkin A (1968) Evolution of the auditory conducting apparatus in terrestrial vertebrates. In: deReuck AVS, Knight J (eds) Ciba Foundation Symposium on Hearing Mechanisms in Vertebrates. London: Churchill, pp. 18–37.

    Google Scholar 

  • Turner RG (1980) Physiology and Bioacoustics in reptiles. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 205–237.

    Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear, Princeton University Press.

    Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological Acoustics, Princeton University Press.

    Google Scholar 

  • Wilson JP, Bruns V (1983) Middle-ear mechanics in the CF-bat Rhinolophus ferrumequinum. Hearing Research 10:1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rosowski, J.J. (1992). Hearing in Transitional Mammals: Predictions from the Middle-Ear Anatomy and Hearing Capabilities of Extant Mammals. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_38

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics