Skip to main content

Immunological Regulation of Endometrial Function: Cytokine Production in the Human Endometrium

  • Conference paper
Molecular and Cellular Aspects of Periimplantation Processes

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

The physiological functions of various organs and tissues are thought to be regulated by a paracrine system employing a number of growth factors and cytokines, as well as by the nerve and endocrine systems. Recently, a reciprocal relationship between endocrine and immune functions has become apparent in the female reproductive system with respect to ovarian and uterine functions. Furthermore, a number of cytokines have been identified that are produced in the female reproductive organs. Of the various cytokines known to be produced in the uterus, it is suggested that macrophage colony stimulating factor (M-CSF) (1, 2), stem cell factor (SCF) (3, 4), leukemia inhibitory factor (LIF) (5, 6), and transforming growth factor β (TGFβ) (7)are thought to stimulate or suppress local immune cell function and play important roles in blastocyst implantation and/or early placental development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollard JW, Bartocci A, Arceci R, Orlofsky A, Landner MB, Stanley ER. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature 1987; 330: 484–6.

    Article  PubMed  CAS  Google Scholar 

  2. Regenstreif LJ, Rossant J. Expression of the c-fms proto-oncogene and of the cytokine, CSF-1, during mouse embryogenesis. Dev Biol 1989; 133: 284–94.

    Article  PubMed  CAS  Google Scholar 

  3. Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P. Developmental expression of c-kit, a protooncogene encoded by the W locus. Development 1990; 109: 911–23.

    PubMed  CAS  Google Scholar 

  4. Horie K, Fujita J, Takakura K, et al. Expression of c-kit protein during placental development. Biol Reprod 1991; 47: 614–20.

    Article  Google Scholar 

  5. Smith AG, Nichols J, Robertson M, Rathjen PD. Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev Biol 1992; 151: 339–51.

    Article  PubMed  CAS  Google Scholar 

  6. Shen MM, Leder P. Leukemia inhibitory factor is expressed by the pre-implantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 1992; 89: 8240–4.

    Article  PubMed  CAS  Google Scholar 

  7. Graham CH, Lysiak JJ, McCrae KR, Lala PK. Localization of transforming factor-β at the human fetal-maternal interface: role in trophoblast growth and differentiation. Biol Reprod 1992; 46: 561–72.

    Article  PubMed  CAS  Google Scholar 

  8. Stanley ER. The macrophage colony-stimulating factor, CSF-1. Methods Enzymol 1985; 116: 564–87.

    Article  PubMed  CAS  Google Scholar 

  9. Clark SC, Kamen R. The human hematopoietic colony-stimulating factors. Science 1987; 236: 1229–37.

    Article  PubMed  CAS  Google Scholar 

  10. Kauma SW, Aukerman SL, Eierman D, Turner T. Colony-stimulating factor-1 and c-fms expression in human endometrial tissue and placenta during the menstrual cycle and early pregnancy. J Clin Endocrinol Metab 1991; 73: 746–51.

    Article  PubMed  CAS  Google Scholar 

  11. Kanzaki H, Yui J, Iwai M, et al. The expression and localization of mRNA for colony-stimulating factor (CSF)-1 in the human term placenta. Hum Reprod 1992; 7: 563–7.

    PubMed  CAS  Google Scholar 

  12. Sherr CJ, Rettenmeir CW, Sacca R, Roussel MF, Cook AT, Stanley ER. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 1985; 41: 665–76.

    Article  PubMed  CAS  Google Scholar 

  13. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (oplop) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 1991; 148: 273–83.

    Article  PubMed  CAS  Google Scholar 

  14. Daiter E, Pampfer S, Yeung YG, Barad D, Stanley ER, Pollard JW. Expression of colony stimulating factor-1 (CSF-1) in the human uterus and placenta. J Clin Endocrinol Metab 1992; 74: 850–8.

    Article  PubMed  CAS  Google Scholar 

  15. Arceci RJ, Shanahan F, Stanley ER, Pollard JW. Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development. Proc Natl Acad Sci USA 1989; 86: 8812–22.

    Article  Google Scholar 

  16. Williams DE, Eisenman J, Baird A, et al. Identification of a ligand for the c-kit proto-oncogene. Cell 1990; 63: 167–74.

    Article  PubMed  CAS  Google Scholar 

  17. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–24.

    Article  PubMed  CAS  Google Scholar 

  18. Huang E, Nocka K, Beier D, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63: 225–33.

    Article  PubMed  CAS  Google Scholar 

  19. Kuroda H, Terada N, Nakayama H, Matsumoto K, Kitamura Y. Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev Biol 1988; 126: 71–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nakayama H, Kuroda H, Onoue H, et al. Studies of Sl/Sld +/+ mouse aggregation chimaeras, II. Effect of the steel locus on spermatogenesis. Development 1988; 102: 117–26.

    PubMed  CAS  Google Scholar 

  21. Arceci RJ, Pampfer S, Pollard JW. Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev Biol 1992; 151: 1–8.

    Article  PubMed  CAS  Google Scholar 

  22. Horie K, Fujita J, Takakura K, et al. Expression of c-kit protein during placental development. Biol Reprod 1992; 47: 614–20.

    Article  PubMed  CAS  Google Scholar 

  23. Horie K, Fujita J, Takakura K, et al. The expression of c-kit protein in human adult and fetal tissues. Hum Reprod 1993; 11: 1955–62.

    Google Scholar 

  24. Fujita J, Onoue H, Ebi Y, Nakayama H, Kanakura Y. In vitro duplication and in vivo cure of mast-cell deficiency of Sl/Sld mutant mice by cloned 3T3 fibroblasts. Proc Natl Acad Sci USA 1989; 86: 2888–91.

    Article  PubMed  CAS  Google Scholar 

  25. Witte ON. Steel locus defines new multipotent growth factor. Cell 1990; 63: 5–6.

    Article  PubMed  CAS  Google Scholar 

  26. Sharkey AM, Jokhi PP, King A, Loke YW, Brown KD, Smith SK. Expression of c-kit and kit ligand at the human maternofetal interface. Cytokine 1994; 6: 195–205.

    Article  PubMed  CAS  Google Scholar 

  27. Gearing DP, Gough NM, King JA, et al. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 1987; 6: 3995–4002.

    PubMed  CAS  Google Scholar 

  28. Baumann H, Wong GG. Hepatocyte-stimulating factor III shares structural and functional identity with leukemia-inhibitory factor. J Immunol 1989; 143: 1163–7.

    PubMed  CAS  Google Scholar 

  29. Williams RL, Hilton DJ, Pease S, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988; 336: 684–8.

    Article  PubMed  CAS  Google Scholar 

  30. Smith AG, Heath JK, Donaldson DD, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988; 336: 688–90.

    Article  PubMed  CAS  Google Scholar 

  31. Abe E, Tanaka H, Ishimi Y, et al. Differentiation-inducing factor purified from conditioned medium of mitogen-treated spleen cell cultures stimulates bone resorption. Proc Natl Acad Sci USA 1986; 83: 5958–62.

    Article  PubMed  CAS  Google Scholar 

  32. Yamamori T, Fukada K, Aebersold R, Korsching S, Fann M-J, Patterson PH. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 1989; 246: 1412–6.

    Article  PubMed  CAS  Google Scholar 

  33. Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci USA 1991; 88: 11408–12.

    Article  PubMed  CAS  Google Scholar 

  34. Stewart CL, Kasper P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359: 76–9.

    Article  PubMed  CAS  Google Scholar 

  35. Shen MM, Leder P. Leukemia inhibitory factor is expressed by the pre-implantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 1992; 89: 8240–4.

    Article  PubMed  CAS  Google Scholar 

  36. Kojima K, Kanzaki H, Iwai M, et al. Expression of leukemia inhibitory factor in human endometrium and decidua. Biol Reprod 1994; 50: 882–7.

    Article  PubMed  CAS  Google Scholar 

  37. Gearing DP, Thut CJ, VandenBos T, et al. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J 1991; 10: 2839–48.

    PubMed  CAS  Google Scholar 

  38. Graycar J, Miller D, Arrick B, Lyons R, Moses H, Derynck R. Human transforming growth factor-β3: recombinant expression, purification, and biological activities in comparison with transforming growth factor-β1 and -β2. Mol Endocrinol 1989; 3: 1977–86.

    Article  PubMed  CAS  Google Scholar 

  39. Chiefetz S, Hernandez H, Laiho M, ten Dijke P, Iwata K. Distinct transforming growth factor-β (TGF-β) receptor subsets as determinants of cellular responsiveness to three TGF-β isoforms. J Biol Chem 1990; 265: 20533–8.

    Google Scholar 

  40. Chegini N, Zhao Y, Williams R, Flanders C. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-β1 (TGF-β1), TGF-β2, TGF-β3, and TGF-β type II receptor messenger ribonucleic acid and protein and contains [1251]TGF 131-binding sites. Endocrinology 1994; 135: 439–49.

    Article  PubMed  CAS  Google Scholar 

  41. Kauma S, Matt D, Strom S, Eierman D, Turner T. Interleukin-1β, human leukocyte HLA-DRα transforming growth factor-β expression in endometrium, placenta, and placental membranes. Am J Obstet Gynecol 1990; 163: 130–7.

    Google Scholar 

  42. Roberts AB, Sporn MB. The transforming growth factor-βs. In: Sporn MB, Rôberts AB, eds. Handbook of experimental pharmacology: peptide growth factors and their receptors; vol 95. Heidelberg: Springer Verlag, 1990: 419–72.

    Google Scholar 

  43. Graham CH, Lysiak JJ, McCrae KR, Lala PK. Localization of transforming growth factor-β at the human fetal-maternal interface: role in trophoblast growth and differentiation. Biol Reprod 1992; 46: 561–72.

    Article  PubMed  CAS  Google Scholar 

  44. Ignotz RA, Massague J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extra-cellular matrix. J Biol Chem 1986; 261: 4337–45.

    PubMed  CAS  Google Scholar 

  45. Ignotz RA, Massague J. Cell adhesion protein receptors as targets for trans-forming growth factor-β action. Cell 1987; 51: 189–97.

    Article  PubMed  CAS  Google Scholar 

  46. Lala PK, Graham CH. Mechanism of trophoblast invasiveness and their control: the role of proteases and protease inhibitors. Cancer Metastasis Rev 1990; 9: 369–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Kanzaki, H., Mori, T. (1995). Immunological Regulation of Endometrial Function: Cytokine Production in the Human Endometrium. In: Dey, S.K. (eds) Molecular and Cellular Aspects of Periimplantation Processes. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2548-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2548-5_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7575-6

  • Online ISBN: 978-1-4612-2548-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics