Skip to main content

Abstract

The concentrations of four major cations, Ca2+, Mg2+, Na+, K+, and three major anions, HCO -3 , SO 24 -, and Cl-, essentially constitute the total ionic salinity of most fresh waters, as other ions make very minor contributions (Wetzel 1983). Undissociated materials, such as silicic acid, make insignificant contributions to the total dissolved solids in moderate to higher ionic strength waters. Four of the major ions, Mg2+, Na+, K+ and Cl-;, are largely conservative (i.e., unreactive) in lake ecosystems. The salinity of most lakes is governed by the composition of inflowing waters (Wetzel 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdollahi, H., and Nedwell, D.B. 1979. Seasonal temperature as a factor influencing sulfate reduction in a saltmarsh sediment. Microb EcoL. 5: 73–89.

    CAS  Google Scholar 

  • Adams, D.D., Matisoff, G., and Snodgrass, W.J. 1982. Flux of reduced chemical constituents (Fe2+, Mn2+, NH +4 , and CH4) and sediment oxygen demand in Lake Erie. Hydrobiology 92: 405–414.

    Google Scholar 

  • Addess, J.M. 1990. Methane cycling in Onondaga Lake, NY. Masters Thesis, College of Environmental Science and Forestry, State University of New York. Syracuse, NY.

    Google Scholar 

  • Addess, J.M., and Effler S.W. 1996. Summer methane fluxes and fall oxygen resources of Onondaga Lake, New York. Lake Reservoir Manag. (in press).

    Google Scholar 

  • Ahlgren, I. 1977. Role of sediments in the process of recovery of a eutrophic lake. In: H.L. Golterman (ed.), Interactions between Sediments and Fresh Water. Junk, Hague, pp. 372–377.

    Google Scholar 

  • Aller, R.C., and Yingst, J.Y. 1980. Relationships between microbial distribution and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, U.S.A. Mar Biol. 56: 29–42.

    CAS  Google Scholar 

  • Anderson, J.M. 1975. Influence of pH on release of phosphorus from lake sediments. Arch Hydrobiol. 76: 411–419.

    Google Scholar 

  • Andersson, A. 1979. Mercury in soils. In: J.O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment. Elsevier North Holland Biomedical Press, Dordrecht, The Netherlands, pp. 79–106.

    Google Scholar 

  • Anthonisen, A.C., Loehr, R.C., Prakansam, T.B.S., and Srinath, E.G. 1976. Inhibitions of nitrification by ammonia and nitrous acid. J Wat Pollut Control Fed. 48: 835–852.

    CAS  Google Scholar 

  • APHA. 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Auer, M.T., Johnson, N., Penn, M.P., and Effler, S.W. 1993. Measurement and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiology 253: 301–309.

    CAS  Google Scholar 

  • Auer, M.T., Kieser, M.S., and Canale, R.P. 1986. Identification of critical nutrient levels through field verification of models for phosphorus and phytoplankton growth. Can J Fish Aquat Sci. 43: 379–388.

    CAS  Google Scholar 

  • Auer, M.T., Storey, M.L., Effler, S.W., Auer, N.A., and Sze, P. 1990. Zooplankton impacts on chlorophyll and transparency in Onondaga Lake, New York, U.S.A. Hydrobiology 200/201: 603–617.

    Google Scholar 

  • Baccini, P. 1985. Phosphate interactions at the sediment-water interface. In: W. Stumm (ed), Chemical Processes in Lakes. Wiley-Interscience, New York, pp. 189–205.

    Google Scholar 

  • Ball, J.W., Nordstrom, D.K., and Jenne, E.A. 1980. Additional and Revised Thermochemical Data for WATEQZ: a Computerized Model for Trace and Major Element Speciation and Mineral Equilibria of Natural Waters; U.S. Geol. Survey Water Resources Investigations, Report 78–116, Menlo Park, CA.

    Google Scholar 

  • Benes T., and Havlik, B. 1979. Speciation of mercury in the environment. In: J.O. Nriagu (ed.), The Biogeochemistry of Mercury in the Environment. Elsevier North Holland Biomedical Press, Dordrecht, The Netherlands, pp. 175–202.

    Google Scholar 

  • Bernard, P.C. VanGrieken R.E., and Eisma, D. 1986. Environ Sci Technol. 20: 267–273.

    Google Scholar 

  • Berner, R.A. 1968. Calcium carbonate concretions formed by the decomposition of organic matter. Science 159: 195–197.

    PubMed  CAS  Google Scholar 

  • Bloom, N. 1989. Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence detection. Can J Fish Aquat Sci. 46: 1131–1140.

    CAS  Google Scholar 

  • Bloom, N. 1990. A preliminary mass balance for mercury in Onondaga Lake, New York. In: S.T. Saroff (ed.), Proceedings of the Onondaga Lake Remediation Conference. Environmental Protection Bureau, New York State Office of the Attorney General, Albany, NY, pp. 124–128.

    Google Scholar 

  • Bloom, N., and Effler, S.W. 1990. Seasonal variability in the mercury speciation of Onondaga Lake (New York). Water Air Soil Pollut. 53: 251–265.

    CAS  Google Scholar 

  • Bloom, N., and Fitzgerald, W.F. 1988. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection. Anal Chim Acta. 208: 151–161.

    CAS  Google Scholar 

  • Bloom, N., and Watras, C.J. 1989. Observations of methylmercury in precipitation. Sci Tot Environ. 87/88: 199–207.

    Google Scholar 

  • Böstrom, B., Andersen, J.M., Flerscher, S., and Jansson, M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiology 170: 229–244.

    Google Scholar 

  • Bowie, G.L., Milles, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.H., Gherini, S.A., and Chamberlin, C.E. 1985. Rates, Constants, and Kinetic Formulations in Surface Water Quality Modeling, 2d ed. EPA/600/3–85 /040, United States Environmental Protection Agency, Environmental Research Laboratory, Athens, GA 30613.

    Google Scholar 

  • Brezonik, P.L., and Lee, G.F. 1968. Denitrification as a nitrogen sink in Lake Mendota, Wis. Environ Sci Technol. 2: 120–125.

    CAS  Google Scholar 

  • Brooks, C.M., and Effler, S.W. 1990. The distribution of nitrogen species in polluted Onondaga Lake, N.Y., U.S.A. Water Air Soil Pollut. 52: 247–262.

    CAS  Google Scholar 

  • Brunskill, G.J. 1969. Fayetterville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol Oceanogr. 14: 830–847.

    CAS  Google Scholar 

  • Cappenberg, T.E., Hordijk, C.A., and Hagenaars, C.P.M.M. 1984. A comparison of bacterial sulfate reduction and methanogenesis in the anaerobic sediments of a stratified lake ecosystem. Arch Hydrobiol Beih Ergebn Limnol. 19: 191–199.

    CAS  Google Scholar 

  • Caraco, N.F., Cole J.J., and Likens, G.E. 1989. Evidence for sulfate-controlled P release from sediments of aquatic systems. Nature (London) 341: 316–318.

    CAS  Google Scholar 

  • Caraco, N.F., Cole, J.J., and Likens, G.E. 1991. A cross-system study of phosphorus release from Lake sediments. In: J. Cole, G. Lovett and S. Findlay (eds.), Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. Springer-Verlag, New York, pp. 241–258.

    Google Scholar 

  • Carder, K.L., Steward, R.G., Johnson, D.L., and Prospero. 1986. Geophys Res. 91: 1955–1066.

    Google Scholar 

  • Carlson, R.F. 1977. A trophic status index for lakes. Limnol Oceanogr. 22: 361–368.

    CAS  Google Scholar 

  • Cavari, B.Z. 1977. Nitrification potential and factors govering the rate of nitrification in Lake Kinnert. Oikos 28: 285–290.

    CAS  Google Scholar 

  • Chanton, J.P., Martens, C.S., and Kelley, C.A. 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol Oceanogr. 34: 807–819.

    CAS  Google Scholar 

  • Chapra, S.C., and Canale, R.P. 1991. Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Res. 25: 707–715.

    CAS  Google Scholar 

  • Chapra, S.C., and Dobson, H.F.H. 1981. Quantification of the lake typologies of Naumann (surface growth) and Thienemann (oxygen) with special reference to the Great Lakes. J Great Lakes Res. 7: 182–193.

    Google Scholar 

  • Chapra, S.C., and Reckhow, K.H. 1983. Engineering Approaches for Lake Management, Volume 2: Mechanistic Modeling. Butterworth, Boston.

    Google Scholar 

  • Chen, C.T., and Millero, F.J. 1977a. Precise equation of state for seawater covering only the oceanic range of salinity, temperature and pressure. Deep Sea Res. 24: 365–369.

    Google Scholar 

  • Chen, C.T., and Millero, F.J. 1977b. The use and misuse of pure water PVT properties for lake waters. Nature 266: 707–708.

    CAS  Google Scholar 

  • Chen, C.T., and Millero, F.J. 1978. The equation of state of seawater determined from sound speeds. J Mar Res. 36: 657–691.

    Google Scholar 

  • Compeau, G.C., and Bartha, R. 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 50: 498–502.

    PubMed  CAS  Google Scholar 

  • Cooke, G.D., Welch, E.B., Perterson, S.A., and Newroth, P.R. 1986. Lake and Reservoir Restoration. Butterworth, Boston.

    Google Scholar 

  • Cornett, R.J., and Rigler, F.H. 1980. The areal hypolimnetic oxygen deficit: an empirical test of the model. Limnol Oceanogr. 25: 672–679.

    CAS  Google Scholar 

  • Crawford, R.E., and Allen, G.H. 1977. Seawater inhibition of nitrite toxicity to chinook salmon. Trans Am Fish Soc. 106: 105–109.

    CAS  Google Scholar 

  • Crumpton, W.G., and Isenhart, T.M. 1988. Diurnal patterns of ammonia and unionized ammonia in streams receiving secondary treatment effluent. Bull Environ Contam Toxicol. 40: 539–544.

    PubMed  CAS  Google Scholar 

  • Curtis, E.J.C., Durrant, K., and Harman, M.M.I. 1975. Nitrification in rivers in the Trent Basin. Water Res. 9: 255–268.

    CAS  Google Scholar 

  • Davidson, W., Heaney, S.I., Tailing, J.F., and Rigg, E. 1981. Seasonal transformations and movements of iron in a productive English lake with deep-water anoxia. Schweiz H Hydrobiol. 42: 196–224.

    Google Scholar 

  • Dence, W.A. 1956. Concretions of the alewife, Pomolobus pseudoharengus (Wilson) at Onondaga Lake, New York. Copeia 3:155–158.

    Google Scholar 

  • Devan, S.P., and Effler, S.W. 1984. The recent history of phosphorus loading to Onondaga Lake. J Environ Engr ASCE 110: 93–109.

    CAS  Google Scholar 

  • Dillon, P.J. 1975. The phosphorus budget of Cameron Lake, Ontario: The importance of flushing rate to the degree of eutrophy of lakes. Limnol Oceanogr. 20: 28–39.

    CAS  Google Scholar 

  • DiToro, D.M., and Connolly, J.P. 1980. Mathematical Models of Water Quality in Large Lakes, Part 2: Lake Erie, USEPA, Environmental Research Laboratory, EPA-600/3–80-065, Duluth, MN.

    Google Scholar 

  • DiToro, D.M., Paquin, R.P., Subburamu, K., and Gruber, D.A. 1990. Sediment oxygen demand: methane and ammonia oxidation. J Environ. Engr ASCE 116: 945–986.

    CAS  Google Scholar 

  • Doerr, S.M., Effler, S.W., Whitehead, K.A., Auer, M.T., Perkins, M.G., and Heidtke, T.M. 1994. Chloride model for polluted Onondaga Lake. Wates Res. 28: 849–861.

    CAS  Google Scholar 

  • Driscoll, C.T., Effler, S.W., Auer, M.T., Doerr, S.M., and Penn, M.R. 1993. Supply of phosphorus to the water column of a productive hardwater lake: controlling mechanisms and management considerations. Hydrobiology 253: 61–72.

    CAS  Google Scholar 

  • Driscoll, C.T., Effler, S.W., and Doerr, S.M. 1994a. Changes in inorganic carbon chemistry and deposition of Onondaga Lake, New York. Environ Sci Technol. 28: 1211–1218.

    CAS  Google Scholar 

  • Driscoll, C.T., Yan, C., Schofield, C.L., Munson, R., and Holsapple, J. 1994b. The chemistry and bioavailability of mercury in remote Adirondack lakes. Environ Sci Technol. (in press).

    Google Scholar 

  • Edmondson, W.T., and Lehman, J.T. 1981. The effect of changes in nutrient income on the condition of Lake Washington. Limnol Oceanogr. 26: 1–29.

    Google Scholar 

  • Effler, S.W. 1984. Carbonate equilibrium and the distribution of inorganic carbon in Saginaw Bay. J Great Lakes Res. 10: 3–14.

    CAS  Google Scholar 

  • Effler, S.W. 1987a. The impact of a chlor-alkali plant on Onondaga Lake and adjoining systems. Water Air Soil Pollut. 33: 85–115.

    CAS  Google Scholar 

  • Effler, S.W. 1987b. The importance of whiting as a component of raw water turbidity. J Am Water Works Assoc. 79: 80–82.

    CAS  Google Scholar 

  • Effler, S.W., Auer, M.T., and Johnson, N.A. 1989a. Modeling Cl concentration in Cayuga Lake, U.S.A. Water Air Soil Pollut. 44: 347–362.

    CAS  Google Scholar 

  • Effler, S.W., Brooks, C.M., Addess, J.M., Doerr, S.M., Storey, M.L., and Wagner, B.A. 1991a. Pollutant loadings from Solvay waste beds to lower Ninemile Creek, New York. Water Air Soil Pollut. 55: 427–444.

    CAS  Google Scholar 

  • Effler, S.W., Brooks, C.M., Auer, M.T., and Doerr, S.M. 1990. Free ammonia in a polluted hypereutrophic, urban lake. Res J Water Pollut Contr Fed. 62: 771–779.

    CAS  Google Scholar 

  • Effler, S.W., Brooks, C.M., and Whitehead, K.A. 1996. Domestic waste inputs of nitrogen and phosphorus to Onondaga Lake, and water quality implications. Lake Reservoir Manag (in press).

    Google Scholar 

  • Effler, S.W., Devan, S.P., and Rodgers, P.W. 1985a. Chloride loading to Lake Ontario from Onondaga Lake, New York. J Great Lakes Res. 11: 53–58.

    CAS  Google Scholar 

  • Effler, S.W., and Driscoll, C.T. 1985. Calcium chemistry and deposition in ionically polluted Onondaga Lake, NY. Environ Sci Technol. 19:716–720.

    CAS  Google Scholar 

  • Effler, S.W., Driscoll, C.T., Wodka, M.C., Honstein, R., Devan, S.P., Juran, P., and Edwards, T. 1985b. Phosphorus cycling in ionically polluted Onondaga Lake, New York. Water Air Soil Pollut. 24: 121–130.

    CAS  Google Scholar 

  • Effler, S.W., Field, S.D., and Quirk, M. 1982. The seasonal cycle of inorganic carbon species in Cazenovia Lake, NY, 1977. Freshwater Biol. 12: 139–147.

    CAS  Google Scholar 

  • Effler, S.W., Field, S.D., and Wilcox, D.A. 1981. The carbonate chemistry of Green Lake, Jamesville, NY . J Freshwater Ecol. 1: 141–153.

    CAS  Google Scholar 

  • Effler, S.W., Hassett, J.P., Auer, M.T., and Johnson, N. 1988. Depletion of epilimnetic oxygen and accumulation of hydrogen sulfide in the hypo-limnion of Onondaga Lake, NY, U.S.A. Water Air Soil Pollut. 39: 59–74.

    CAS  Google Scholar 

  • Effler, S.W., and Johnson, D.L. 1987. Calcium carbonate precipitation and turbidity measurements in Otisco Lake, New York. Water Res Bull. 23: 73–79.

    CAS  Google Scholar 

  • Effler, S.W., Johnson, D.L., Jiao, J.F., and Perkins, M.G. 1992. Optical impacts and sources of suspended solids in Onondaga Creek, U.S.A. Water Res Bull. 28: 251–262.

    Google Scholar 

  • Effler, S.W., Johnson, D.L., Perkins, M.G., and Brooks, C. 1985c. “A Selective Limnological Analysis of Otisco Lake, NY.” Environmental Management Council, Onondaga County, Syracuse, NY.

    Google Scholar 

  • Effler, S.W., and Owens, E.M. 1986. The density of inflows to Onondaga Lake, U.S.A., 1980 and 1981. Water Air Soil Pollut. 28: 105–115.

    Google Scholar 

  • Effler, S.W., and Owens, E.M. 1987. Modifications in phosphorus loading to Onondaga Lake, U.S.A., associated with alkali manufacturing Water Air Soil Pollut. 32: 177–182.

    CAS  Google Scholar 

  • Effler, S.W., Owens, E.M., and Schimel, K.A. 1986a. Density stratification in ionically enriched Onondaga Lake, U.S.A. Water Air Soil Pollut. 27: 247–258.

    CAS  Google Scholar 

  • Effler, S.W., Owens, E.M., Schimel, K.A., and Dobi, J. 1986b. Weather-based variations in thermal stratification. J Hydr Engr ASCE 112: 159–165.

    Google Scholar 

  • Effler, S.W., and Perkins, M.G. 1987. Failure of spring turnover in Onondaga Lake, NY, U.S.A. Water Air Soil Pollut. 34: 285–291.

    CAS  Google Scholar 

  • Effler, S.W., Perkins, M.G., and Brooks, C.M. 1986c. The oxygen resources of the hypolimnion of ionically enriched Onondaga Lake, NY, U.S.A. Water Air Soil Pollut. 29: 93–108.

    CAS  Google Scholar 

  • Effler, S.W., Perkins, M.G., Carter, C., Wagner, B.A. Brooks, C., and Kent, D. 1989b. “Limnology and Water Quality of Cross Lake, 1988”. Submitted to Cayuga County Department of Health, Auburn, NY.

    Google Scholar 

  • Effler, S.W., Perkins, M.G., and Garofalo, J.E. 1987a. “Limnological Analysis of Otisco Lake for 1986”. Environmental Management Council, Onondaga County, Syracuse, NY.

    Google Scholar 

  • Effler, S.W., Perkins, M.G., Garofalo, J.E., Greer, H., Johnson, D.L., and Auer, N. 1987b. “Limnological Analysis of Owasco Lake for 1986.” Submitted to Cayuga County Department of Health, Auburn, NY.

    Google Scholar 

  • Effler, S.W., Perkins, M.G., Greer, H., and Johnson, D.L. 1987c. Effects of whiting on turbidity and optical properties in Owasco Lake, NY. Water Res Bull. 23: 189–196.

    CAS  Google Scholar 

  • Effler, S.W., Perkins, M.G., Kent. D., Brooks, C.M., Wagner, B., Storey M.L., and Greer, H. 1989c. “Limnology of Lake Como, Duck Lake, Otter Lake, Parker Pond, and Little Sodus Bay, 1988”. Submitted to Cayuga County Department of Health, Auburn, NY.

    Google Scholar 

  • Effler, S.W., Perkins, M.G., and Wagner, B.A. 1991b. Optics of Little Sodus Bay. J Great Lakes Res. 17: 109–119.

    Google Scholar 

  • Effler, S.W., Perkins, M.G., Wagner, B.A., and Greer, H. 1989d. “Limnological Analysis of Otisco Lake, 1988”. Submitted to Water Quality Management Agency of Onondaga County, Syracuse, NY.

    Google Scholar 

  • Effler, S.W., Schimel, K.A., and Millero, F.J. 1986d. Salinity, chloride, and density relationships in ion enriched Onondaga Lake, NY. Water Air Soil Pollut. 27: 169–180.

    CAS  Google Scholar 

  • Effler, S.W., Wodka, M.C., Driscoll, C.T., Brooks, C.M., Perkins, M.G., and Owens, E.M. 1986e. Entrainment-based flux of phosphorus in Onondaga Lake. J Environ Engr ASCE 112: 617–622.

    Google Scholar 

  • Einsele, W. 1936. Über die beziehungen des eisenkreislaufs zum phosphatkreislauf im eutrophen See. Arch Hydrobiol. 29: 664–686.

    CAS  Google Scholar 

  • Emerson, K., Russo, R.C., Lund, R.E., and Thurston, R.V. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Bd Can. 32: 2379–2383.

    CAS  Google Scholar 

  • Fallon, R.D., Harrits, S., Hanson, R.S., and Brock, T.D. 1980. The role of methane in internal carbon cycling in Lake Mendota during summer stratification. Limnol Oceanogr. 25: 357–360.

    CAS  Google Scholar 

  • Fernandez, H., Vazquez, F., and Millero, F.J. 1982. The density and composition of hypersaline waters of a Mexican lagoon. Limnol Oceanogr. 27: 315–321.

    Google Scholar 

  • Fitzgerald, W.F. 1986. Cycling of mercury between the atmosphere and oceans. In: P. Buat-Menaud (ed.), The Role of Air-Sea Exchange in Geochemical Cycling. D. Reidel, Hingham, MA, pp. 363–408.

    Google Scholar 

  • Fitzgerald, W.F., and Watras, C.J. 1989. Mercury in surficial waters of rural Wisconsin lakes. Sci Tot Environ. 87/88: 223–232.

    Google Scholar 

  • Fogg, T.R., and Fitzgerald, W.F. 1979. Mercury in southern New England coastal rains. J Geophys Res. 84: 6987–6989.

    CAS  Google Scholar 

  • Freedman, P.L., and Canale, R.P. 1977. Nutrient release from anaerobic sediments. J Envir Engr ASCE 103: 233–244.

    CAS  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 43: 1075–1090.

    CAS  Google Scholar 

  • Furutani, A., and Rudd, J.W.M. 1980. Measurement of mercury methylation in lake water and sediment samples. Appl Environ Microbiol. 40: 770–776.

    PubMed  CAS  Google Scholar 

  • Gächter, R. 1987. Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiz Z Hydrol. 49: 170–185.

    Google Scholar 

  • Gill, G.A., and Bruland, K.W. 1990. Mercury speciation in surface freshwater systems in California and other areas. Environ Sci Technol. 24: 1392–1400.

    CAS  Google Scholar 

  • Gill, G.A., and Fitzgerald, W.F. 1985. Mercury sampling of open ocean waters at the picomolar level. Deep Sea Res. 32: 287–297.

    CAS  Google Scholar 

  • Gill, G.A., and Fitzgerald, W.F. 1987. Picomolar mercury measurements in seawater and other materials using stannous chloride reduction and two-stage gold amalgamation with gas phase detection. Mar Chem. 20: 227–243.

    CAS  Google Scholar 

  • Gilmour, C.C., Henry, E.A., and Mitchell, R. 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol. 26: 2281–2287.

    CAS  Google Scholar 

  • Golterman, H.L. (ed.). 1977. Interactions Between Sediments and Freshwater. Dr. W. Junks, The Hague.

    Google Scholar 

  • Gunatilaka, A. 1982. Phosphate adsorption kinetics of resuspended sediments in a shallow lake, Neusiedlersee, Austria. Hydrobiology 91:293–298.

    Google Scholar 

  • Hall, G.H. 1986. Nitrification in lakes. In: J.I. Prosser (ed.), Nitrification. IRL Press, Washington, DC, pp. 127–156.

    Google Scholar 

  • Harris, G.P. 1986. Phytoplankton Ecology, Structure, Function, and Fluctuation. Chapman and Hall, New York.

    Google Scholar 

  • Hawke, D., Carpenter, P.D., and Hunter, K.A. 1989. Competitive adsorption of phosphate on geothite in marine electrolytes. Environ Sci Technol. 23: 187–191.

    CAS  Google Scholar 

  • Healey, F.P., and Hendzel, L.L. 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can J Fish Aguat Sci. 37: 442–453.

    CAS  Google Scholar 

  • Hecky, R.E., Campell, P., and Henzel, L.L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr. 38: 709–724.

    CAS  Google Scholar 

  • Honstein, R.L. 1981. An Assessment of Mechanisms by Which Phosphorus May Be Regulated Within the Sediments of Onondaga Lake, New York. Masters Thesis, Department of Civil Engineering, Syracuse University, Syracuse, NY.

    Google Scholar 

  • Hutchinson, G.E. 1938. On the relation between oxygen deficit and the productivity and typology of lakes. Int Rev Gesamten Hydrobiol Hydrogr. 36: 336–355.

    CAS  Google Scholar 

  • Hutchinson, G.E. 1957. A Treatise of Limnology. Volume I: Geography, Physics and Chemistry. John Wiley and Sons, New York.

    Google Scholar 

  • Hutchinson, G.E. 1973. Eutrophication: the scientific background of a contemporary practical problem. Am Sci. 61: 269–279.

    CAS  Google Scholar 

  • Ingvorsen, K., and Brock, T.D. 1982. Electron flow via sulfate reduction and methanogensis in the anaerobic hypolimnion of Lake Mendota. Limnol Oceanogr. 27: 559–564.

    CAS  Google Scholar 

  • Ingvorsen, K., Zeikus, J.G., and Brock, T.D. 1981. Appl Environ Microbiol. 42: 1029–1036.

    PubMed  CAS  Google Scholar 

  • Jannasch, H.W. 1975. Methane oxidation in Lake Kivu (central Africa). Limnol Oceanogr. 20: 860–864.

    CAS  Google Scholar 

  • Johnson, D.L. 1983. Automated scanning microscopic characterization of particle inclusions in biological tissues. Scan Elect Micros. 3: 1211–1228.

    Google Scholar 

  • Johnson, D.L., Jiao, J., DesSantos, S.G., and Effler, S.W. 1991. Individual particle analysis of suspended materials in Onondaga Lake, New York. Environ Sci Technol. 25: 736–744.

    CAS  Google Scholar 

  • Jones, B.F., and Bowser, C.J. 1978. The mineralogy and related chemistry of lake sediments. In: A Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, pp. 179–227.

    Google Scholar 

  • Jones, J.G., and Simon, B.M. 1980. Decomposition processes in the profundal region of Blelham Tarn and the Lund tubes. J Ecol. 68: 493–512.

    CAS  Google Scholar 

  • Jorgensen, B.B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden Denmark). Limnol Oceanogr. 22: 814–832.

    Google Scholar 

  • Jorgensen, B.B., Kuenen, J.G., and Cohen, Y. 1979. Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr. 24: 799–822.

    Google Scholar 

  • Keeney, D.R., 1973. The nitrogen cycle in sediment-water systems. J Environ Qual. 2: 15–29.

    CAS  Google Scholar 

  • Kelly, C.A., and Chynoweth, D.P. 1981. The contribution of temperature and of the input of organic matter in controlling rates of sediment methanogenesis. Limnol Oceanogr. 26: 891–897.

    CAS  Google Scholar 

  • Kelly, C.A., Rudd, J.W.M., and Schindler, D.W. 1988. Carbon and electron flow via methanogenesis, SO -4 , NO -3 , Fe3+, and Mn4+ reduction in anoxic hypolimnia of three lakes. Arch Hydrobiol Beih Ergebn Limnol. 31: 333–344.

    CAS  Google Scholar 

  • Kelly, G.S. 1967. Precise representation of volume properties of water at one atmosphere. J Chem Engr Data. 12: 66–69.

    Google Scholar 

  • Kelts, K., and Hsü, K.J. 1978. Freshwater carbonate sedimentation. In: A Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, pp. 295–324.

    Google Scholar 

  • Kirk, J.T.O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, ENG.

    Google Scholar 

  • Klots, C.E. 1961. Effect of hydrostatic pressure upon the solubility of gases. Limnol Oceanogr. 6: 365–366.

    Google Scholar 

  • Knowles, R. 1982. Denitrification. Microbiol Rev. 46: 43–70.

    PubMed  CAS  Google Scholar 

  • Kortmann, R.W., Henry, D.D., Kuether, A., and Kaufman, S. 1987. Epilimnetic nutrient loading by metalimnetic erosion and resultant algal responses in Lake Waramaug, Connecticut. Hydrobiology 91: 501–510.

    Google Scholar 

  • Kramer, J.R., Herbes, S.E., and Allen, H.E. 1972. Phosphorus: analysis of water, biomass, and sediment. In: Nutrients in Natural Waters. Wiley Interscience, New York, pp. 51–100.

    Google Scholar 

  • Larsen, D.P., Schultz, D.W., and Malereg, K.W. 1981. Summer internal phosphorus supplies in Shagawa Lake, Minnesota. Limnol Oceanogr. 26: 740–753.

    CAS  Google Scholar 

  • Lean, D.R.S., McQueen, D.J., and Story, V.A. 1986. Phosphate transport during hypolimnetic aeration. Arch Hydrobiol. 108: 269–280.

    Google Scholar 

  • Lewis, W.J. 1988. Uncertainty in pH and temperature corrections for ammonia toxicity. J Water Pollut Contr Fed. 60: 1922–1929.

    CAS  Google Scholar 

  • Lewis, W.M., and Morris. 1986. Toxicity of nitrite to fish: a review. Trans Am Fish Soc. 115: 183–195.

    CAS  Google Scholar 

  • Lindqvist, O. 1991. Mercury in the Swedish environment. Recent research on causes, consequences, and corrective methods. Water Air Soil Pollut. 55: 1–2.

    Google Scholar 

  • Lindqvist, O., Jernelov, A., Johansson, A., and Rodhe, H. 1984. Mercury in the Swedish environment. Global and local sources. Report 1816. National Swedish Environmental Protection Board, Solna, Sweden.

    Google Scholar 

  • Livingtone, D.A. 1963. Chemical composition of river and lakes. Chapter G. Data of Geochemistry, 6th ed. Prof. Paper. U.S. Geol. Survey 440-G, 64pp.

    Google Scholar 

  • Loder, T.C., and Liss, P.S. 1985. Control by organic coatings of the surface charge of estuarine suspended particles. Limnol Oceanogr. 30: 418–421.

    CAS  Google Scholar 

  • Martens, C.S., and Klump, J.V. 1980. Biogeo-chemical cycling in an organic-rich coastal marine basin-1. Methane sediment-water exchange processes. Geochimica et Cosmochimica Acta. 44: 471–490.

    CAS  Google Scholar 

  • Mattson, M.D., and Likens, G.E. 1993. Redox reactions of organic matter decomposition in a soft water lake. Biogeochem 19: 149–172.

    CAS  Google Scholar 

  • McCoy, E.F. 1972. The Role of Bacteria in the Nitrogen Cycle of Lakes. USEPA, Office of Research and Monitoring, Water Pollution Control Research Service 16010 EHR 03/72, Washington, DC.

    Google Scholar 

  • Messer, J.J., Ho, J., and Grenney, W.J. 1984. Ionic strength correction for extent of ammonia ionization in freshwater. Can Fish Aquat Sci. 41: 811–815.

    CAS  Google Scholar 

  • Mierle, G., and Ingram, R. 1991. The role of humic substances in the mobilization of merucry from watersheds. Water Air Soil Pollut. 56: 349–357.

    CAS  Google Scholar 

  • Millero, F.J. 1973. Seawater—a test of multicomponent electrolyte solution theories. I. The apparent equivalent volume, expansibility and compressibility, of artificial seawater. J Solution Chem. 2: 1–22.

    CAS  Google Scholar 

  • Millero, F.J. 1974. Seawater as a multicomponent electrolyte solution. In: E.D. Goldberg (ed.), The Sea, Volume 5. John Wiley and Sons, New York, pp. 3–80.

    Google Scholar 

  • Millero, F.J. 1975, The physical chemistry of estuaries. In: T.M. Church (ed.), ACS Symposium Series, No. 18, American Chemical Society, Washington, DC, pp. 25–55.

    Google Scholar 

  • Millero, F.J., Gonzalez, A., and Ward, G.K. 1976a. The density of seawater solutions at one atmosphere as a function of temperature and salinity. J Mar Res. 34: 61–93.

    Google Scholar 

  • Millero, F.J., Lawson, D., and Gonzalez, A. 1976b. The density of artificial river and estuarine waters. J Geophys Res. 81: 1177–1179.

    CAS  Google Scholar 

  • Molongoski, J.J. and Klug, M.J. 1980. Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake. Freshwater Biol. 10: 447–506.

    Google Scholar 

  • Morel, F.M.M. 1983. Principles of Aquatic Chemistry. John Wiley and Sons, New York.

    Google Scholar 

  • Mortimer, C.H. 1941. The exchange of dissolved substances between mud and water (Parts I and II). J Ecol. 29: 280–329.

    CAS  Google Scholar 

  • Mortimer, C.H. 1942. The exchange of dissolved substances between mud and water in lakes (Parts III and IV, summary, and references). J Ecol. 30: 147–201.

    CAS  Google Scholar 

  • Mortimer, C.H. 1971. Chemical exchanges between the sediments and water in the Great Lakes— speculations on probable regulatory mechanisms. Limnol Oceanogr. 16: 387–404.

    CAS  Google Scholar 

  • Moss, B., Wetzel, R.G., and Lauff, G.H. 1983. Annual productivity and phytoplankton changes between 1969 and 1974 in Gull Lake, Michigan. Freshwater Biol. 10: 113–121.

    Google Scholar 

  • Murphy, C.B. Jr. 1978. Onondaga Lake. In: J.A. Bloomfield (ed.), Lakes of New York State. Volume II: Ecology of the Lakes of Western New York. Academic Press, New York, pp. 224–336.

    Google Scholar 

  • Murphy, T.P., Hall, K.J., and Yesaki, I. 1983. Coprecipitation of phosphate with calcite in a naturally eu trophic lake. Limnol Oceanogr. 28: 58–69.

    CAS  Google Scholar 

  • New York State Department of Environmental Conservation (NYSDEC). 1984. “Fact Sheet.” Surface Water Quality Standard Documentation for Nitrite, Albany, NY.

    Google Scholar 

  • New York State Department on Environmental Conservation (NYSDEC). 1987. An Overview of Mercury Contamination in the Fish of Onondaga Lake. Technical report 87–1 (BEP), Division of Fish and Wildlife, Albany, NY.

    Google Scholar 

  • New York State Department of Environmental Conservation (NYSDEC). 1990. Mercury Sediments—Onondaga Lake. Engineering Investigations at Inactive Hazardous Waste Sites, Phase II Investigation, New York State Department of Environmental Conservation, Volume 1, Albany, NY.

    Google Scholar 

  • New York State Department of Environmental Conservation. 1993. New York State Fact Sheet for Phosphorus: Ambient Water Quality Value for Protection of Recreational Uses. Bureau of Technological Services and Research, Albany, NY.

    Google Scholar 

  • Nürnberg, G.K. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr. 29: 111–124.

    Google Scholar 

  • Nürnberg, G.K. 1985. Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch Hydrohiol. 104: 459–476.

    Google Scholar 

  • Nürnberg, G.K. 1987. A comparison of internal phosphorus loads in lake anoxic hypolimnion: Laboratory incubation versus in situ hypolimnetic phosphorus accumulation. Limnol Oceanogr. 32: 1160–1164.

    Google Scholar 

  • Onondaga County. 1971–1991. Onondaga Lake Monitoring Program Annual Reports. Onondaga County Department of Drainage and Sanitation, Syracuse, New York.

    Google Scholar 

  • Otsuki, A., and Wetzel, R.G. 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnol Oceanogr. 17: 763–767.

    CAS  Google Scholar 

  • Otsuki, A., and Wetzel, R.G. 1973. Interaction of yellow organic acids with calcium carbonate in freshwater. Limnol Oceanogr. 18: 490–493.

    CAS  Google Scholar 

  • Otsuki, A./and Wetzel, R.G. 1974. Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. Arch Hydrobiol. 73: 14–30.

    Google Scholar 

  • Owens, E.M. 1987. “Bathymetric Survey and Mapping of Onondaga Lake, New York”. submitted to Department of Drainage and Sanitation, Onondaga County, NY.

    Google Scholar 

  • Owens, E.M., and Effler, S.W. 1989. Changes in stratification in Onondaga Lake, New York. Water Res Bull. 25: 587–597.

    CAS  Google Scholar 

  • Parks, J.W., Lutz, A., and Sutton, J.A. 1989. Water column methylmercury in the Wabigoon/English River—Lake system: factors controlling concentrations, speciation and net production. Can J Fish Aquat Sci. 46: 2184–2202.

    CAS  Google Scholar 

  • Parsons, T.R., Maita, Y., and Lalli, C.M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.

    Google Scholar 

  • Payne, W.J. 1973. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 37: 409–452.

    PubMed  CAS  Google Scholar 

  • Penn, M.R., Pauer, J.J., Gelda, R.K., and Auer, M.T. 1993. Laboratory Measurements of Chemical Exchange at the Sediment-Water Interface of Onondaga Lake. Report submitted to Onondaga Lake Management Conference, Syracuse, NY.

    Google Scholar 

  • Psenner, R., and Gunatilaka, A. (eds.). 1988. Proceedings of the First International Workshop and Sediment Phosphorus. Arch Hydrobiol. 30: 1–115.

    Google Scholar 

  • Ramm, A.E., and Bella, P.A. 1974. Sulfide production in anaerobic microcosms. Limnol Oceanogr. 19: 425–441.

    Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment. Am Sci. 46: 206–226.

    Google Scholar 

  • Remane, A., and Schlieper, C. 1971. The Biology of Brackish Water. John Wiley and Sons, New York.

    Google Scholar 

  • Robertson, C.K. 1979. Quantitative comparison of the significance of methane in the carbon cycles of two small lakes. Arch Hydrobiol Beih Ergebn Limnol. 12: 123–135.

    CAS  Google Scholar 

  • Rudd, J.W.M., Furutani, A., Flett, R.J., and Hamilton, R.D. 1976. Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration. Limnol Oceanogr. 21: 357–364.

    CAS  Google Scholar 

  • Rudd, J.W.M., and Hamilton, R.D. 1975. Methane oxidation in a eutrophic Canadian Shield lake. Verh Internat Verein Limnol. 19: 2669–2673.

    Google Scholar 

  • Rudd, J.W.M., and Hamilton, R.D. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr. 23: 337–348.

    CAS  Google Scholar 

  • Rudd, J.W.M., and Taylor, C.D. 1980. Methane cycling in aquatic environments. Adv Aquat Microbiol. 2: 77–150.

    CAS  Google Scholar 

  • Russo, R.C., Smith, C.E., and Thurston, R.V. 1974. Acute toxicity of nitrite to rainbow trout (Salmo gairdneri). J Fish Res Bd Can. 31: 1653–1655.

    CAS  Google Scholar 

  • Russo, R.C., and Thurston, R.V. 1977. The acute toxicity of nitrite to fishes. In: R.A. Tubb (ed.) Recent Advances in Fish Toxicology. USEPA, Ecological Research Series, EPA-600/3-77-085, Corvalis, OR, pp. 118–131.

    Google Scholar 

  • Schaffner, W.R., and Oglesby, R.T. 1979. Limnology of Eight Finger Lakes: Hemlock, Canadice, Honeoye, Keuka, Seneca, Owasco, Skaneateles, and Otisco. In: J.A. Bloomfield (ed.), Lakes of New York State. Volume 1: Ecology of the Finger Lakes. Academic Press, New York, pp. 313–470.

    Google Scholar 

  • Schafran, G.C., and Driscoll, C.T. 1987. Comparison of terrestrial and hypolimnetic sediment generation neutralizing capacity for an acidic Adirondack lake. Environ Sci Technol. 21: 988–993.

    PubMed  CAS  Google Scholar 

  • Schecher, W.D., and McAvoy, D.C. 1992. MINEQL+: A software environment for chemical equilibrium modeling. Comput Environ Urban Systems. 16: 65–76.

    Google Scholar 

  • Seitzinger, S.P. 1988. Denitification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr. 33: 702–724.

    CAS  Google Scholar 

  • Sly, P.G. (ed.). 1986. Sediments and Water Interactions. Springer-Verlag, New York.

    Google Scholar 

  • Smith, C.E., and Williams, W.G. 1974. Experimental nitrite toxicity in rainbow trout and chinook salmon. Trans Am Fish Soc. 103: 389–390.

    CAS  Google Scholar 

  • Smith, R.L., and Klug, M.J. 1981. Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl Environ Microbiol. 41: 1230–1237.

    PubMed  CAS  Google Scholar 

  • Snodgrass, W.J. 1987. Analysis of models and measurements for sediment oxygen demand in Lake Erie. J Great Lakes Res. 13: 738–756.

    CAS  Google Scholar 

  • Sondheimer, E., Dence, W.A., Mattick, L.R., and Silverman, S.R. 1966. Composition of combustible concretions of the alewife, Alosa pseudoharengus. Science 152: 221–223.

    CAS  Google Scholar 

  • Sonzogni, W.C., Richardson, W.L., Rodgers, P.W., and Monteith. 1983. Chloride pollution of the Great Lakes: current assessment. J Wat Pollut Contr Fed. 55: 513–521.

    CAS  Google Scholar 

  • Sprent, J.I., 1987. The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Stabel, H.H. 1986. Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnol Oceanogr. 31: 1081–1093.

    CAS  Google Scholar 

  • Staudinger, B., Peiffer, S., Avnimelech, Y., and Berman, T. 1990. Phosphorus mobility in interstitial waters of sediments in Lake Kinneret, Israel. Hydrohiology 207: 167–177.

    CAS  Google Scholar 

  • Stauffer, R.E. 1985. Relationships between phosphorus loading and trophic state in calcareous lakes of southeast Wisconsin. Limnol Oceanogr. 30: 123–145.

    CAS  Google Scholar 

  • Stauffer, R.E., and Lee, G.F. 1974. The role of thermocline migration in regulating algal bloom. In: E.J. Middlebrooks, D.H. Falkenberg, and T.E. Maloney (eds.) Modeling the Eutrophic Process. Ann Arbor Science, Ann Arbor, MI, pp. 73–82.

    Google Scholar 

  • Stoermer, E.F. 1978. Phytoplankton assemblages as indicators of water quality in the Laurentian Great Lakes. Trans Am Microsci Soc. 97: 2–16.

    Google Scholar 

  • Strayer, R.F., and Tiedje, J.M. 1978. In situ methane production in a small, hypereutrophic, hard-water lake: loss of methane from sediments by vertical diffusion and ebullition. Limnol Oceanogr. 23: 1201–1206.

    CAS  Google Scholar 

  • Strong, A.E., and Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. Limnol Oceanogr. 23: 877–887.

    CAS  Google Scholar 

  • Stumm, W., and Leckie, J.J. 1971. Phosphate exchange with sediments: its role in the productivity of surface waters. Adv Wat Pollut Res. 5; 1970, 111–26: 1–16.

    Google Scholar 

  • Stumm, W., and Morgan, J.J. 1981. Aquatic Chemistry 2d ed. John Wiley and Sons, New York.

    Google Scholar 

  • Sweerts, J.P.A., Bar-Gilissen, M.J., Corneleses, A.A., and Cappenburg, T.E. 1991. Oxygen consuming processes at the profundal and littoral sediment-water interface of a small mesoeutrophic lake (Lake Vechtan, The Netherlands). Limnol Oceanogr. 36: 1124–1133.

    CAS  Google Scholar 

  • Taggart, C.T. 1984. Hypolimnetic aeration and zoo-plankton distribution: a possible limitation to the restoration of cold-water fish production. Can J Fish Aquat Sci. 41: 191–198.

    Google Scholar 

  • Tailing, J.F. 1974. Measurements on non-isolated natural communities: In standing waters. In: R.A. Vollenweider (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook No. 12, Blackwell Scientific, London.

    Google Scholar 

  • Truesdell, A.H., and Jones, B.F. 1974. WATEQ, a computer program for calculating chemical equilibria in natural waters. J Res U.S. Geol Surv. 2: 233–274.

    CAS  Google Scholar 

  • United States Environmental Protedtion Agency (USEPA). 1973. Report of Mercury Source Investigation: Onondaga Lake, New York and Allied Chemical Coroporation, Solvay, New York. National Field Investigation Center, Cincinnati, OH and Region II, New York.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA). 1985. Ambient Water Quality Criteria for Ammonia— 1984. Office of Water Regulations and Standards Criteria and Standards Division, Washington, DC.

    Google Scholar 

  • Uttormark, F.D. 1978. General Concepts of Lake Degradation and Lake Restoration. USEPA. 740/5-79-001, pp. 65–70.

    Google Scholar 

  • Vandal, G.M., Mason, R.P., and Fitzgerald, W.F. 1991. Cycling of volatile mercury in temperate lakes. Water Air Soil Pollut. 56: 791–803.

    CAS  Google Scholar 

  • Verduin, J. 1960. Phytoplankton Communities in Western Lake Erie and the C02 and 02 changes associated with them. Limnol Oceanogr. 5: 372–380.

    Google Scholar 

  • Vollenweider, R.A. 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Technical Report DAS/C81/68, Organization for Economic Cooperation and Development, Paris, France.

    Google Scholar 

  • Vollenweider, R.A. 1975. Input—output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol. 33: 53–83.

    Google Scholar 

  • Vollenweider, R.A. (ed.) 1982. Eutrophication of Waters: monitoring, Assessment and Control. Organization of Economic Cooperation and Development, Paris, France.

    Google Scholar 

  • Walker, W.W. 1979. Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Res Res. 15: 1463–1470.

    CAS  Google Scholar 

  • Walker, W.W. 1991. Compilation and Review of Onondaga Lake Water Quality Data. Report submitted to Onondaga County Department of Drainage and Sanitation. Syracuse, NY.

    Google Scholar 

  • Wallen, et al. 1957, Toxicity to Garnbusia affinis of certain pure chemicals in turbid waters. Sewage Industr Wastes. 29: 695

    CAS  Google Scholar 

  • Wang, W. 1993. Patterns of total mercury concentration in Onondaga Lake. Master’s thesis, Syracuse University, Syracuse, NY.

    Google Scholar 

  • Weidemann, A.D., Bannister, T.T., Effler, S.W., and Johnson, D.L. 1985. Particle and optical properties during CaC03 precipitation in Otisco Lake. Limnol Oeeanogr. 30: 1078–1083.

    CAS  Google Scholar 

  • Welch, E.B., and Perkins, M.A. 1979. Oxygen deficit-phosphorus loading relation in lakes. J Water Pollut Contr Fed. 51: 2823–2828.

    CAS  Google Scholar 

  • Welch, E.B., Spyridakis, D.E., Shuster, J.I., and Horner, R.R. 1986. Declining lake sediment phosphorus release and oxygen deficit following wastewater diversion. J Wat Pollut Contr Fed. 58: 92–96.

    CAS  Google Scholar 

  • Wells, R.D., and Erickson, E.T. 1933. The analysis and composition of fatty material produced by the decomposition of herring in sea water. J Am Chem Soc. 55: 338–342.

    CAS  Google Scholar 

  • Westhall, J.C., Zachary, J.C., and Morel, F.M.M. 1976. MINEQL, A Computer Program for the Calculation of Chemical Equilibrium in Aqueous Systems. Ralph M. Parson Laboratory for Water Resources and Environmental Engineering, Technical Note 18. Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Westrich, J.T., and Berner, R.A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oeeanogr. 29: 236–249.

    CAS  Google Scholar 

  • Wetzel, R.G. 1983. Limnology, 2d ed. Saunders College, Philadelphia.

    Google Scholar 

  • Wetzel, R.G., and Likens, G.E. 1991. Limnological Analyses, 2d ed. Springer-Verlag, New York.

    Google Scholar 

  • Wilcox, D.A., and Effler, S.W. 1981. Formation of alewife concretions in polluted Onondaga Lake. Environ Pollut. (Series B) 2: 203–215.

    CAS  Google Scholar 

  • Winfrey, M.R., and Rudd, J. 1990. Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem. 9: 853–869.

    CAS  Google Scholar 

  • Winfrey, M.R., and Zeikus, J.G. 1977. Effect of sulfate on carbon and electron flow during microbial methanogensis in freshwater sediments. Appl Environ Microbiol. 33: 276–281.

    Google Scholar 

  • Wirth, H.E. 1940. The problem of the density of seawater. J Mar Res. 3: 230–247.

    CAS  Google Scholar 

  • Wodka, M.C., Effler, S.W., and Driscoll, C.T. 1985. Phosphorus deposition from the epilimnion of Onondaga Lake Limnol Oeeanogr. 30: 833–843.

    CAS  Google Scholar 

  • Wodka, M.C., Effler, S.W., Driscoll, C.T., Field, S.D., and Devan, S.P. 1983. Diffusivity-based flux of phosphorus in Onondaga Lake. J Environ Engr. 109: 1403–1445.

    CAS  Google Scholar 

  • Wu, J. 1969. Wind stress and surface roughness at the air-sea interface. J Geophys Rev. 74: 444–455.

    Google Scholar 

  • Yamamoto, S., Alcanskas, J.B., and Crozier, T.E. 1976. Solubility of methane in distilled water and seawater. J Chem Engr Data. 21: 78–80.

    CAS  Google Scholar 

  • Yin, C., and Johnson, D.L. 1984. An individual particle analysis and budget study of Onondaga Lake sediments. Limnol Oeeanogr. 29: 1193–1201.

    CAS  Google Scholar 

  • Young, T.F. 1951. Recent development in the study of interactions between molecules and ions, and the equilibrium in solutions. Ree Chem Progr. 12: 81–95.

    CAS  Google Scholar 

  • Zeikus, J.G., and Winfrey, M.R. 1976. Temperature limitations of methanogensis in aquatic sediments. Appl Environ Microbio. 31: 99–107.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Effler, S.W. et al. (1996). Chemistry. In: Effler, S.W. (eds) Limnological and Engineering Analysis of Polluted Urban Lake. Springer Series on Environmental Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2318-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2318-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7500-8

  • Online ISBN: 978-1-4612-2318-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics