Skip to main content

Comments on Shock-Compression Science in Highly Porous Solids

  • Chapter
High-Pressure Shock Compression of Solids IV

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The recently revived interest in the science and technology of porous solids subjected to high-pressure, shock-compression loading is well highlighted in the present volume. The recent work follows earlier developments, beginning some 40 years ago, which were principally concerned with either determination of high-pressure Hugoniot curves defining states of thermodynamic equilibrium achievable by strong shock compression of porous solids [1,2] or purely mechanical analysis of material consolidation by, or attenuation of, low-amplitude pressure pulses propagating in these materials [3,4]. Lines of research based on these pioneering efforts continue to the present. Nevertheless, newer problems posed particularly by observations of chemical synthesis in porous-powder mixtures, the processing of ceramics, special metals, and diamonds into fully dense well-bonded states, and deflagration-to-detonation transitions (DDT) in high explosives are not realistically described by the equilibrium, continuum approaches developed in the early years. These modern problems require description at the particle level, including physical, mechanical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Al’tshuler, K K. Krupnikov, B.N. Ledenev, V.I. Zhuchikhin, and M.I. Brazhnik, Sov. Phys.-JETP 34, p. 606 (1958).

    Google Scholar 

  2. R.F. McQueen and S.P. Marsh, in Behavior of Dense Media Under High Dynamic Pressures, Symposium H. D. P., Gordon and Breach, New York, pp. 207–216 (1968).

    Google Scholar 

  3. W. Herrmann, J. Appl. Phys. 40, pp. 2490–2499 (1969).

    Article  ADS  Google Scholar 

  4. W.J. Murri, D.R. Curran, C.F. Peterson, and R.C. Crewdson, in Advances in High Pressure Research, Vol. 4 (ed. R. H. Wentorf, Jr.), Academic Press, New York, pp. 1–163 (1974).

    Google Scholar 

  5. M.M. Carroll and A.C. Holt, J. Appl Phys. 43, pp. 1626–1635 (1972).

    Article  ADS  Google Scholar 

  6. G.J. Ravichandran, J. Appl. Phys. 74, pp. 2425–2435 (1993). (See also the work of F. Collombet et al., in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (ed. L.E. Murr, K.P. Staudhammer and M.A. Meyers), Elsevier, pp. 51–58 (1995).

    Article  ADS  Google Scholar 

  7. P.Yu. Butyagin, Russ. Chem. Rev. 40, pp. 901–915 (1971).

    Article  ADS  Google Scholar 

  8. V.W. Gustov, in High Pressure Chemistry and Physics of Polymers (ed. A.L. Kovarskii), CRC Press, Boca Raton, FL, pp. 303–340 (1994).

    Google Scholar 

  9. Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo (1993).

    Google Scholar 

  10. A.B. Sawaoka, editor, Shock Waves in Materials Science, Springer-Verlag, Tokyo (1993).

    Google Scholar 

  11. R.A. Graham, Solids Under High Pressure Shock Compression: Me chanics, Physics, and Chemistry, Springer-Verlag, New York (1993).

    Google Scholar 

  12. R.A. Graham and A.B. Sawaoka, editors, High Pressure Explosive Processing of Ceramics, Trans Tech Publications, Switzerland (1987).

    Google Scholar 

  13. See, e.g., R.F. Trunin, G.V. Simakov, Yu.N. Sutulov, A.B. Medvedev, B.D. Rogozkin, and Yu.E. Fedorov, Sov. Phys.-JETP 69, pp. 580–588 (1989)

    Google Scholar 

  14. R.F. Trunin, G.V. Simakov, Yu.N. Sutulov, A.B. Medvedev, B.D. Rogozkin, and Yu.E. Fedorov, Sov. Phys.-JETP 69, p. 580 (1989).

    Google Scholar 

  15. B.A. Khasainov, A.A. Borisov, B.S. Ermolaev, and A.I. Korotkov, in Seventh International Detonation Symposium, pp. 435–447 (1981).

    Google Scholar 

  16. VF. Nesterenko, Combustion, Explosion and Shock Waves 21, p. 730 (1985).

    Article  Google Scholar 

  17. M.A. Meyers, S.S. Shang, and K. Hokamoto, in [10], pp. 145–176.

    Google Scholar 

  18. C.E. Morris, Shock Waves 1, pp. 213–222 (1991).

    Article  ADS  Google Scholar 

  19. Y. Horie, unpublished manuscript (1993).

    Google Scholar 

  20. N.W. Page, Shock Waves 4, pp. 73–80 (1994).

    Article  ADS  Google Scholar 

  21. B.R. Kruger and T. Vreeland, Jr., J. Appl. Phys. 69, p. 710 (1991).

    Article  ADS  Google Scholar 

  22. Y. Horie, in High Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1235–1238 (1994).

    Google Scholar 

  23. W.H. Gourdin, J. Appl. Phys. 55, pp. 172–181 (1984).

    Article  ADS  Google Scholar 

  24. R.B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T.J. Ahrens, Acta Metall. 32, pp. 1243–1252 (1984).

    Article  Google Scholar 

  25. V.F. Nesterenko, Combust. Explos. Shock Waves 11, p. 376 (1976).

    Article  Google Scholar 

  26. K. Kondo, in [12], pp. 227–282.

    Google Scholar 

  27. J.N. Johnson and S. J. Green, in The Effects of Voids on Materials Deformation, AMD-16, American Society of Mechanical Engineers, New York (1976).

    Google Scholar 

  28. J. Swegle, J. Appl. Phys. 51, p. 2574 (1980).

    Article  ADS  Google Scholar 

  29. M. Hwang, Y. Horie, and S. You, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 597–600 (1992).

    Google Scholar 

  30. S. You, Y. Horie, and M. Hwang, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 601–604 (1992).

    Google Scholar 

  31. M.R. Baer and J.W. Nunziato, Int. J. Multiphase Flow 12, p. 861 (1986).

    Article  MATH  Google Scholar 

  32. M.R. Baer,in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1247–1250 (1994). See also, M.R. Baer, this volume, Chapter 3.

    Google Scholar 

  33. J.W. Taylor, in Shock Waves in Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), North-Holland, Amsterdam, pp. 3–15 (1984).

    Google Scholar 

  34. Y. Horie, in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, pp. 603–614 (1995).

    Google Scholar 

  35. A.R. West, Solid State Chemistry and its Applications, Wiley, New York (1984).

    Google Scholar 

  36. H. Schmalzried, Solid State Reactions, Verlag Chemie, Basel (1981).

    Google Scholar 

  37. R.A. Graham, in 3rd Symposium High Dynamic Pressures (ed. R. Chéret), Commissariat a l’Énergie Atomique, Paris, pp. 175–180 (1989).

    Google Scholar 

  38. B. Morosin and R.A. Graham, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 4–13 (1982).

    Google Scholar 

  39. R.A. Graham and N.N. Thadhani, in [10].

    Google Scholar 

  40. See references in [9] and [40].

    Google Scholar 

  41. N.N. Thadhani, in Prog. Mater. Sci. 37, pp. 117–226 (1993).

    Article  Google Scholar 

  42. S. Thunborg, Jr., G.E. Ingram, and R.A. Graham, Rev. Sci. Instrum. 35, pp. 11–14(1964).

    Article  ADS  Google Scholar 

  43. M.U. Anderson and R.A. Graham, in Shock Compression of Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, pp. 1101–1104 (1996).

    Google Scholar 

  44. R.A. Graham, B. Morosin, E.L. Venturing and M.J. Carr, in Annual Reviews in Materials Science, Vol. 16 (eds. R.A. Huggins, J.A. Giordmaine, and J.B. Wachtman, Jr.), Annual Reviews, Palo Alto, CA, pp. 315–341 (1986).

    Google Scholar 

  45. B. Morosin and R.A. Graham, Mater. Sci. Eng. 66, pp. 73–87 (1984).

    Article  Google Scholar 

  46. B. Morosin, E.L. Venturini, R.A. Graham, and D.S. Ginley, Synthetic Metals 33, pp. 1185–224 (1989).

    Article  Google Scholar 

  47. R.A. Graham, editor The Morosin Papers on X-ray Diffraction Line Broadening of Shock-Modified Solids, unpublished (1995).

    Google Scholar 

  48. R.A. Graham, editor The Sandia Papers on Synthesis of Zinc Ferrite Under High Pressure Shock Compression, unpublished, (1995).

    Google Scholar 

  49. B. Morosin and R.A. Graham, Mater. Lett. 3, pp. 119–123. (1985).

    Article  Google Scholar 

  50. Y. Zhang, J.M. Stewart, B. Morosin, R.A. Graham, and C.R. Hubbard, Appl. Phys. Commun. 9, pp. 183–202 (1989).

    Google Scholar 

  51. D.L. Williamson, E.L. Venturini, R.A. Graham, and B. Morosin, Phys. Rev. B34, pp. 1899–1907 (1986).

    ADS  Google Scholar 

  52. P. Newcomer, B. Morosin, and R.A. Graham, in Advances in X-ray Analysis, Vol. 36 (eds. J. V. Gillich et al.), Plenum, New York, pp. 595–601 (1993).

    Google Scholar 

  53. E.L. Venturini, B. Morosin, and R.A. Graham, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 77–81 (1982).

    Google Scholar 

  54. See [11], p. 166.

    Google Scholar 

  55. R.R. Hasiguti, in Annual Review of Mater. Science Vol. 2 (eds. R.A. Huggins, R.H. Bube, and R.W. Roberts), Annual Reviews, Palo Alto, CA, pp. 69–92 (1972).

    Google Scholar 

  56. E.L. Venturini and R.A. Graham, in Defect Properties and Processing of High-Technology Nonmetallic Materials (eds. J.H. Crawford, Jr., Y. Chen, and W.A. Sibley), Materials Research Society, Boston, pp. 383–389 (1984).

    Google Scholar 

  57. R.A. Graham, B. Morosin, Y. Horie, E.L. Venturini, M. Boslough, M.M. Carr, and D.L. Williamson, in Shock Waves in Condensed Matter (ed. Y.M. Gupta), Plenum, New York, pp. 693–711 (1986).

    Google Scholar 

  58. N.N. Thadhani and T. Aizawa, this volume, Chapter 10.

    Google Scholar 

  59. N.N. Thadhani, R.A. Graham, T. Royal, E. Dunbar, M.U. Anderson, and G.T. Holman, J. Appl. Phys., in press.

    Google Scholar 

  60. F. Bauer, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 251–266 (1982).

    Google Scholar 

  61. R.A. Graham, M.U. Anderson, F. Bauer, and R.E. Setchell, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 883–886 (1992).

    Google Scholar 

  62. M. Baer, private communication (1995).

    Google Scholar 

  63. M.U. Anderson, R.A. Graham, and G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1994).

    Google Scholar 

  64. W.H. Holt, W. Mock, Jr., M.U. Anderson, G.T. Holman, and R.A. Graham, in Shock Waves in Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York (1996).

    Google Scholar 

  65. S.A. Sheffield, R.L. Gustavsen, R.R. Alcon, R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1377–1380 (1994).

    Google Scholar 

  66. R.A. Graham, High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 3–12 (1994).

    Google Scholar 

  67. L. Davison and R.A. Graham, Phys. Rep. 55, pp. 256–379 (1979).

    Article  ADS  Google Scholar 

  68. J.J. Gilman, Science 274, p. 65 (1990).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Graham, R.A. (1997). Comments on Shock-Compression Science in Highly Porous Solids. In: Davison, L., Horie, Y., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids IV. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2292-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2292-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7489-6

  • Online ISBN: 978-1-4612-2292-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics