Skip to main content

The Development of Cochlear Function

  • Chapter
Development of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 9))

Abstract

The cochlea is the window through which the central auditory system views its acoustic environment. The transduction of air borne sound by the hair cells and the neural encoding at the periphery place constraints on the acoustic features that are available for further processing by auditory neurons in the brain. At birth, the cochlea in most altricial mammals is still very immature. It is effectively unresponsive to sound and generates little sustained (spontaneous) activity. During the first month after the onset of hearing, significant changes occur in cochlear functioning, changes that are reflected in both the overall level and spatiotemporal pattern of nerve impulses that are transmitted centrally over the auditory nerve. The task of determining the extent to which maturational changes in auditory perception, spontaneous activity, and central responses to sound originate within the cochlea and to what degree these changes reflect the development of central synaptic processes remains a formidable challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED (1931) The microphonic action of the cochlea: an interpretation of Wever and Bray’s experiments. J Physiol (Lond) 71:28–29.

    Google Scholar 

  • Aitkin LM, Moore DR (1975) Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in central nucleus of neonatal cat. J Neurophysiol 38:1208–1216.

    PubMed  CAS  Google Scholar 

  • Anastasio TJ, Correia MJ, Perachio AA (1985) Spontaneous and driven responses of semicircular canal primary afferents in the unanesthetized pigeon. J Neurophysiol 54:335–344.

    PubMed  CAS  Google Scholar 

  • Änggard L (1965) An electrophysiological study of the development of cochlear function in the rabbit. Acta Otolaryngol Suppl 203:1–64.

    Google Scholar 

  • Anniko M (1985) Histochemical, microchemical (microprobe), and organ culture approaches to the study of auditory development. Acta Otolaryngol Suppl 421:10–18.

    PubMed  CAS  Google Scholar 

  • Anniko M, Nordemar H (1980) Embryogenesis of the inner ear. IV. Postnatal maturation of the secretory epithelia of the inner ear in correlation with the elemental composition in the endolymphatic space. Arch Otorhinolaryngol 229:281–288.

    PubMed  CAS  Google Scholar 

  • Anniko M, Wroblewski R (1986) Ionic environment of cochlear hair cells. Hear Res 22:279–293.

    PubMed  CAS  Google Scholar 

  • Anniko M, Wroblewski R, Wersäll J (1979) Development of endolymph during maturation of the mammalian inner ear. A preliminary report. Arch Otorhinolaryngol 225:161–163.

    PubMed  CAS  Google Scholar 

  • Arjmand E, Harris D, Dallos P (1988) Developmental changes in frequency mapping of the gerbil cochlea: comparison of two cochlea locations. Hear Res 32:93–97.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347.

    CAS  Google Scholar 

  • Bargones JY, Burns EM (1988) Suppression tuning curves for spontaneous otoacoustic emissions in infants and adults. J Acoust Soc Am 83:1809–1816.

    PubMed  CAS  Google Scholar 

  • Bobbin RP, Fallon M, Li L, Berlin CI (1991) Guinea pigs show post-natal stability in frequency mapping at the basal turn. Hear Res 51:231–234

    PubMed  CAS  Google Scholar 

  • Bock GR, Steel KP (1983) Inner ear pathology in the deafness mutant mouse. Acta Otolaryngol 96:39–47.

    PubMed  CAS  Google Scholar 

  • Bock GR, Webster WR (1974) Spontaneous activity of single units in the inferior colliculus of anesthetized and unanesthetized cats. Brain Res 76:150–154.

    PubMed  CAS  Google Scholar 

  • Bonfils P, Dumont A, Marie P, Francois M, Narcy P (1990) Evoked otoacoustic emissions in newborn hearing screening. Laryngoscope 100:186–190.

    PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231:435–445.

    PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1988) Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8:901–919.

    PubMed  CAS  Google Scholar 

  • Born DE, Durham D, Rubel EW (1991) Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557:37–47.

    PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1971) A study of the electrochemistry and osmotic relationship of the cochlear fluids in the neonatal rat at the time of development of the endocochlear potential. J Physiol (Lond) 212:739–761.

    CAS  Google Scholar 

  • Brown AM (1973a) High frequency peaks in the cochlear microphonic response of rodents. J Comp Physiol 83:377–392.

    Google Scholar 

  • Brown AM (1973b) High levels of responsiveness from the inferior colliculus of rodents at ultrasonic frequencies. J Comp Physiol 83:393–406.

    Google Scholar 

  • Brown AM, McDowell B, Forge A (1989) Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 42:143–156.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emission. Ear Hear 11:82–92.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Manis PB, Ritz LA (1979) Ipsilateral inhibitory responses in the cat lateral superior olive. Brain Res 177:189–193.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer Hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Brugge JF (1986) Development of the auditory nerve. In: Aslin RN (ed) Advances In Neural and Behavioral Development. Vol. 2. NJ: Ablex Publishing, pp. 73–94.

    Google Scholar 

  • Brugge JF, O’Connor TA (1984) Postnatal functional development of the dorsal and posteroventral cochlear nuclei of the cat. J Acoust Soc Am 75:1548–1562.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Javel E, Kitzes L (1978) Signs of functional maturation of peripheral auditory system in discharge patterns of neurons in anteroventral cochlear nucleus. J Neurophysiol 41:1557–1579.

    PubMed  CAS  Google Scholar 

  • Burns EM, Hoberg DL, Arehart K, Campbell SL (1992) Prevalence of spontaneous otoacoustic emissions in neonates. J Acoust Soc Am 91:1571–1575.

    PubMed  CAS  Google Scholar 

  • Brusilow SW (1976) Propanolol antagonism to the effect of furosemide on the composition of endolymph in guinea pigs. Can J Physiol Pharmacol 54:42–48.

    PubMed  CAS  Google Scholar 

  • Charpak S, DuBois-Dauphin M, Raggenbass M, Dreifuss J J (1989) Vasopressin excites neurones located in the dorsal cochlear nucleus of the guinea-pig brainstem. Brain Res 483:164–169.

    PubMed  CAS  Google Scholar 

  • Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81:130–136.

    PubMed  CAS  Google Scholar 

  • Chuang SW, Gerber SE, Thornton AR (1993) Evoked otoacoustic emissions in preterm infants. Int J Pediatr Otorhinolaryngol 26:39–45.

    PubMed  CAS  Google Scholar 

  • Church MW, Williams HL, Holloway JA (1984) Postnatal development of the brainstem auditory evoked potential and far-field cochlear microphonic in non-sedated rat pups. Dev Brain Res 14:23–31.

    Google Scholar 

  • Cody AR, Johnstone BM (1981) Acoustic trauma: single neuron basis for the “half-octave shift.” J Acoust Soc Am 70:707–711.

    PubMed  CAS  Google Scholar 

  • Cody AR, Russell J (1987) The responses of hair cells in the basal turn of the guinea-pig cochlea to tones. J Physiol (Lond) 383:551–556.

    CAS  Google Scholar 

  • Cohen YE, Saunders JC (1994) The effect of acoustic overexposure on the tonotopic organization of the nucleus magnocellularis. Hear Res 81:11–21.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Bacon CK, Saunders JC (1992) Middle ear development. III. Morphometric changes in the conducting apparatus of the Mongolian gerbil. Hear Res 62:187–193.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Hernandez HN, Saunders JC (1992) Middle-ear development: II. Morphometric changes in the conducting apparatus of the chick. J Morphol 212:265–267.

    Google Scholar 

  • Cohen YE, Rubin DM, Saunders JC (1992) Middle ear development: I. Extra-stapedius response in the neonatal chick. Hear Res 58:1–8.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Doan DE, Rubin DM, Saunders JC (1993) Middle-ear development. V: Development of umbo sensitivity in the gerbil. Am J Otolaryngol 14:191–198.

    PubMed  CAS  Google Scholar 

  • Cole KS, Robertson D (1992) Early efferent innervation of the developing rat cochlea studied with a carbocyanine dye. Brain Res 575:223–230.

    PubMed  CAS  Google Scholar 

  • Cooper NP, Yates GK (1994) Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibers: variations with characteristic frequency. Hear Res 78:269–285.

    Google Scholar 

  • Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774.

    PubMed  CAS  Google Scholar 

  • Cotanche DA, Sulik KK (1984) The development of stereociliary bundles in the cochlear duct of chick embryos. Dev Brain Res 16:181–193.

    Google Scholar 

  • Cotanche DA, Saunders JC, Tilney LG (1987) Hair cell damage produced by acoustic trauma in the chick cochlea. Hear Res 25:267–286.

    PubMed  CAS  Google Scholar 

  • Cotanche DA, Henson MM, Henson OW Jr (1992) Contractile proteins in the hyaline cells of the chicken cochlea. J Comp Neurol 324:353–364.

    PubMed  CAS  Google Scholar 

  • Cousillas H, Rebillard G (1985) Age-dependent effects of a pure tone trauma in the chick basilar papilla: evidence for a development of the tonotopic organization. Hear Res 19:217–226.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace RR (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol (Lond) 306:79–125.

    CAS  Google Scholar 

  • Crowley DE, Hepp-Reymond MC (1966) Development of cochlear function in the ear of infant rat. J Comp Physiol Psychol 62:427–432.

    Google Scholar 

  • Dallos P (1973) Cochlear potentials and cochlear mechanics. In: A. Møller (ed) Basic Mechanisms in Hearing. New York: Academic Press, pp. 335–376.

    Google Scholar 

  • Dallos P (1981) Cochlear physiology. Annu Rev Psychol 32:153–190.

    PubMed  CAS  Google Scholar 

  • Dallos P (1985) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608.

    PubMed  CAS  Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve response in absence of outer hair cells. J Neurophysiol 41:365–383.

    PubMed  CAS  Google Scholar 

  • Dallos P, Santo-Sacchi I, Flock Å (1982) Intracellular recordings of cochlear outer hair cells. Science 218:582–584.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salycilate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653.

    PubMed  CAS  Google Scholar 

  • Dolan DF, Teas DC, Walton JP (1985) Postnatal development of physiological responses in auditory nerve fibers. J Acoust Soc Am 78:544–554.

    PubMed  CAS  Google Scholar 

  • Drenckhahn D, Merte C, von Düring M, Smolders J, Klinke R (1991) Actin, myosin and alpha-actinin containing filament bundles in hyaline cells of the caiman cochlea. Hear Res 54:29–38.

    PubMed  CAS  Google Scholar 

  • Durham D, Rubel EW, Steel KP (1989) Cochlear ablation in deafness mutant mice: 2-deoxyglucose analysis suggests no spontaneous activity of cochlear origin. Hear Res 43:39–46.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fibre activity in the Tokay gecko. II. Temperature effect on tuning. J Comp Physiol 142:219–226.

    Google Scholar 

  • Echteier SM (1995) Structural correlates of frequency-place map development. Abstr Assoc Res Otolaryngol, pp. 111.

    Google Scholar 

  • Echteier SM, Arjmand E, Dallos P (1989) Developmental alterations in the frequency map of the mammalian cochlea. Nature (Lond) 341:147–149.

    Google Scholar 

  • Eggermont JJ (1991) Maturational aspects of periodicity coding in cat primary auditory cortex. Hear Res 57:45–56.

    PubMed  CAS  Google Scholar 

  • Ehret G, Romand R (1994) Development of tonotopy in the inferior colliculus II: 2-DG measurements in the kitten. Eur J Neurosci 6:1589–1595.

    PubMed  CAS  Google Scholar 

  • Evans BN, Dallos P (1993) Stereocilia displacement induced somatic motility of outer hair cells. Proc Natl Acad Sci USA 90:8347–8351.

    PubMed  CAS  Google Scholar 

  • Evans EF, Klinke R (1982) The effect of intracochlear and systemic furosemide on the properties of single cochlear nerve fibers. J Physiol (Lond) 131:409–428.

    Google Scholar 

  • Fermin CD, Cohen GM (1984) Developmental gradients in the embryonic chick’s basilar papilla. Acta Otolaryngol 97:39–51.

    PubMed  CAS  Google Scholar 

  • Fernándex C, Hinojosa R (1974) Postnatal development of endocochlear potential and stria vascularis in the cat. Acta Otolaryngol 78:173–186.

    Google Scholar 

  • Finck A, Schneck CD, Hartman AF (1972) Development of cochlea function in the neonate mongolian gerbil (Meriones unguiculatus). J Comp Physiol Psychol 78:375–380.

    PubMed  CAS  Google Scholar 

  • Fisher FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Google Scholar 

  • Fitzgerald M (1987) Spontaneous and evoked activity of fetal primary afferents in vivo. Nature (Lond) 326:603–605.

    CAS  Google Scholar 

  • Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Eur J Neurosci 4:798–812.

    PubMed  Google Scholar 

  • Fuchs PA, Sokolowski HA (1990) The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc R Soc Lond B Biol Sci 241:122–126.

    CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Matsuura S (1978) Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eighth nerve fibres in the goldfish. J Physiol (Lond) 276:193–209.

    CAS  Google Scholar 

  • Geisler CD (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hear Res 24:125–132.

    PubMed  CAS  Google Scholar 

  • Gummer AW, Klinke R (1983) Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear Res 12:367–380.

    PubMed  CAS  Google Scholar 

  • Gummer AW, Mark RF (1994) Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii). Neuro-Report 5:685–688.

    CAS  Google Scholar 

  • Harris DM, Dallos P (1984) Ontogenetic changes in frequency mapping of a mammalian ear. Science 225:741–743.

    PubMed  CAS  Google Scholar 

  • Harris DM, Rotche R, Freedom T (1990) Postnatal growth of cochlear spiral in mongolian gerbil. Hear Res 50:1–6.

    PubMed  CAS  Google Scholar 

  • Harvey D, Steel KP (1992) The development and interpretation of the summating potential response. Hear Res 61:137–146.

    PubMed  CAS  Google Scholar 

  • Hashisaki G, Rubel EW (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283:465–473.

    Google Scholar 

  • He DZ, Evans BN, Dallos P (1994) First appearance and development of electro-motility in neonatal gerbil outer hair cells. Hear Res 78:77–90.

    PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1992) Postnatal shift of tonotopic organization in the chick auditory cortex analogue. Neuro Report 3:381–384.

    CAS  Google Scholar 

  • Henley CM, Rybak LP (1995) Ototoxicity in developing mammals. Brain Res Rev 20:68–90.

    PubMed  CAS  Google Scholar 

  • Henley CM, Owings MH, Stagner BB, Martin GK, Lonsbury-Martin BL (1989) Postnatal development of 2fl-f2 otoacoustic emission in pigmented rat. Hear Res 43:141–148.

    Google Scholar 

  • Herrmann K, Shatz CJ (1995) Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4. Proc Natl Acad Sci USA 92:11244–11248.

    PubMed  CAS  Google Scholar 

  • Hirsch JA, Oertel D (1988) Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. J Physiol (Lond) 396:535–548.

    CAS  Google Scholar 

  • Holley M (1991) High-frequency force generation in outer hair cells from the mammalian ear. Bioessays 13:115–120.

    PubMed  CAS  Google Scholar 

  • Holley MC, Kalinec F, Kachar B (1992) Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 102:569–580.

    PubMed  Google Scholar 

  • Hubbard AE, Mountain DC (1983) Alternating current delivered into the scala media alters sound pressure at the eardrum. Science 222:510–512.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s work works. Nature (Lond) 341:397–404.

    CAS  Google Scholar 

  • Hudspeth A J, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Huffman RF, Henson OW Jr (1991) Cochlear and CNS tonotopy: normal physiological shifts in the mustached bat. Hear Res 56:79–85.

    PubMed  CAS  Google Scholar 

  • Huffman RF, Henson OW Jr (1993) Labile cochlear tuning in the mustached bat. II. Concomitant shifts in neural tuning. J Comp Physiol A Sens Neural Behav Physiol 171:735–748.

    CAS  Google Scholar 

  • Hyson R, Rudy JW (1987) Ontogenetic change in the analysis of sound frequency in the infant rat. Dev Psychobiol 20:189–207.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Patuzzi R, Yates GK (1986) Basilar membrane measurements and the traveling wave. Hear Res 22:147–153.

    PubMed  CAS  Google Scholar 

  • Jones SM, Jones TA (1995a) Neural timing characteristics of auditory primary afférents in the chicken embryo. Hear Res 82:139–148.

    PubMed  CAS  Google Scholar 

  • Jones SM, Jones TA (1995b) The tonotopic map in the embryonic chicken cochlea. Hear Res 82:149–157.

    PubMed  CAS  Google Scholar 

  • Kaas JHM, Merzenich MM, Killackey HP (1983) The reorganization of somato-sensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6:325–356.

    PubMed  CAS  Google Scholar 

  • Kaiser A (1992) The ontogeny of homeothermic regulation in post-hatching chicks: its influence on the development of hearing. Comp Biochem Physiol A Comp Physiol 103:105–111.

    CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR (1994) Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. J Comp Neurol 340:87–97.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350:187–198.

    PubMed  CAS  Google Scholar 

  • Kandler K, Fraiuf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15:6890–6904.

    PubMed  CAS  Google Scholar 

  • Katayama A, Corwin JT (1989) Cell production in the chicken cochlea. J Comp Neurol 281:129–135.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 5:1386–1391.

    Google Scholar 

  • Kettner RE, Feng JZ, Brugge JF (1985) Postnatal development of the phase-locked response to low frequency tones of auditory nerve fibers in the cat. J Neurosci 5:275–283.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353:341–363.

    PubMed  CAS  Google Scholar 

  • Koerber KC, Pfeiffer WB, Kiang NY-S (1966) Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp Neurol 16:119–130.

    PubMed  CAS  Google Scholar 

  • Komune S, Nakagawa T, Hisashi K, Kimitsuki T, Uemura T (1993) Mechanism of lack of development of negative endocochlear potential in the guinea pig with hair cell loss. Hear Res 70:197–204.

    PubMed  CAS  Google Scholar 

  • Konishi M (1973) Development of auditory neuronal responses in avian embryos. Proc Nat Acad Sci USA 70:1795–1798.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1995) Synaptically evoked prolonged depolarizations in the developing auditory system. J Neurophysiol 74:1611–1620.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16:1836–1843.

    PubMed  CAS  Google Scholar 

  • Kraus H-J, Aulbach-Kraus K (1981) Morphological changes in the cochlea of the mouse after the onset of hearing. Hear Res 4:89–102.

    PubMed  CAS  Google Scholar 

  • Kuijpers W (1974) Na-K-ATPase activity in the cochlea of the rat during development. Acta Otolaryngol 78:341–344.

    CAS  Google Scholar 

  • Laukli E, Mair IW (1981) Development of surface-recorded cochlear and early neural potentials in the cat. Arch Otorhinolaryngol 233:1–12.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Puel J-L (1987) Development of 2fl-f2 otoacoustic emission in the rat. Hear Res 29:265–271.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Puel J-L, Pujol R (1987) Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol 175:477–487.

    PubMed  CAS  Google Scholar 

  • Leonard DG, Khanna SM (1984) Histological evaluation of damage in cat cochleas used for measurement of basilar membrane mechanics. J Acoust Soc Am 75:515–527.

    PubMed  CAS  Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage and ion-dependent conductances in solitary vertebrate hair cells. Nature (Lond) 304:538–541.

    CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980a) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980b) Efferent synapses in the inner hair cell area of the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:189–204.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alteration of spontaneous discharge rates. Hear Res 16:43–53.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alteration of threshold tuning curves. Hear Res 16:55–74.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1987) Shift of tonotopic organization in brain stem auditory nuclei of the chicken during late embryonic development. Hear Res 25:205–208.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1995) Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res 703:205–213.

    PubMed  CAS  Google Scholar 

  • Lippe WR, Rubel EW (1983) Development of the place principle: tonotopic organization. Science 219:514–516.

    PubMed  CAS  Google Scholar 

  • Lippe WR, Rubel EW (1985) Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle. J Comp Neurol 237:273–289.

    PubMed  CAS  Google Scholar 

  • Lippe WR, Ryals BM, Rubel EW (1986) Development of the place principle. In: Aslin RN (ed) Advances In Neural and Behavioral Development. Vol. 2. Norwood, NJ: Ablex Publishing, pp. 155–203.

    Google Scholar 

  • Lippe WR, Westbrook EW, Ryals BM (1991) Hair cell regeneration in the chicken cochlea following aminoglycoside toxicity. Hear Res 56:203–210.

    PubMed  CAS  Google Scholar 

  • Long GR, Tubis A (1988) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–139.

    PubMed  CAS  Google Scholar 

  • Maffei L, Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87:2861–2864.

    PubMed  CAS  Google Scholar 

  • Mair IW, Elverland HH, Laukli HH (1978) Development of early auditory evoked responses in the cat. Audiology 17:469–488.

    PubMed  CAS  Google Scholar 

  • Manley GA (1996) Ontogeny of frequency mapping in the peripheral auditory system of birds and mammals: a critical review. Aud Neurosci 3:199–214.

    Google Scholar 

  • Manley GA, Robertson D (1976) Analysis of spontaneous activity of auditory neurones in the spiral ganglion of the guinea-pig cochlea. J Physiol (Lond) 258:323–336.

    CAS  Google Scholar 

  • Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237:665–666.

    Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A Sens Neural Behav Physiol 164:289–296.

    Google Scholar 

  • Manley GA, Kaiser A, Brix J, Gleich O (1991) Activity patterns of primary auditory-nerve fibres in chickens: development of fundamental properties. Hear Res 57:1–15.

    PubMed  CAS  Google Scholar 

  • Marty R, Thomas J (1963) Résponse électro-corticale à la stimulation du nerf cochléaire chez la chat nouveau-né. J Physiol (Paris) 55:165–166.

    CAS  Google Scholar 

  • McGuirt JP, Schmiedt RA, Schulte BA (1995) Development of cochlear potentials in the neonatal gerbil. Hear Res 84:52–60.

    PubMed  CAS  Google Scholar 

  • Meister M, Wong ROL, Baylor DA, Shatz CJ (1994) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943.

    Google Scholar 

  • Mills DM, Rubel EW (1996) Development of the cochlear amplifier. J Acoust Soc Am 100:1–15.

    Google Scholar 

  • Mills DM, Norton SJ, Rubel EW (1993) Vulnerability and adaptation of distortion product otoacoustic emissions to endocochlear potential variation. J Acoust Soc Am 94:2108–2122.

    PubMed  CAS  Google Scholar 

  • Mills DM, Norton S J, Rubel EW (1994) Development of active and passive mechanics in the mammalian cochlea. Aud Neurosci 1:77–99.

    Google Scholar 

  • Moffat AJM, Capranica RR (1976) Effects of temperature on the response properties of auditory nerve fibers in the American toad (Bufo americanus). J Acoust Soc Am 60:S80.

    Google Scholar 

  • Moore DR (1981) Development of the cat peripheral auditory system: input-output functions of cochlear potentials. Brain Res 219:29–44.

    PubMed  CAS  Google Scholar 

  • Morlet T, Collet L, Salle B, Morgon A (1993) Functional maturation of cochlear active mechanisms and of the medial olivocochlear system in humans. Acta Otolaryngol 113:271–277.

    PubMed  CAS  Google Scholar 

  • Müller M (1991) Developmental changes of frequency representation in the rat cochlea. Hear Res 56:1–7.

    PubMed  Google Scholar 

  • Müller M (1996) The cochlear place-frequency map of the adult and developing mongolian gerbil. Hear Res 94:148–156.

    PubMed  Google Scholar 

  • Munyer PD, Schulte BA (1995) Developmental expression of proteoglycans in the tectorial and basilar membrane of the gerbil cochlea. Hear Res 85:85–94.

    PubMed  CAS  Google Scholar 

  • Mysliveček J (1983) Development of the auditory evoked responses in the auditory cortex in mammals. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 167–209.

    Google Scholar 

  • Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLU5, in gerbil outer hair cells. Hear Res 82:93–99.

    PubMed  CAS  Google Scholar 

  • Norton S J (1992) Cochlear function and otoacoustic emissions. Semin Hear 13:1–14.

    Google Scholar 

  • Norton S J, Widen JE (1990) Evoked otoacoustic emissions in normal-hearing infants and children: emerging data and issues. Ear Hear 11:121–127.

    PubMed  CAS  Google Scholar 

  • Norton S J, Bargones JY, Rubel EW (1991) Development of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code. Hear Res 51:73–92.

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Siegel JH (1994) Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers. Hear Res 80:174–190.

    PubMed  CAS  Google Scholar 

  • Olson ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. J Acoust Soc Am 89:1262–1275.

    PubMed  CAS  Google Scholar 

  • Olson ES, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. J Acoust Soc Am 95:395–400.

    PubMed  CAS  Google Scholar 

  • Pasic TR, Moore DR, Rubel EW (1994) Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. J Comp Neurol 348:111–120.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1988) An Introduction to the Physiology of Hearing. London: Academic Press.

    Google Scholar 

  • Pirvola U, Lehtonen E, Ylikoski J (1991) Spatiotemporal development of cochlear innervation and hair cell differentiation in the rat. Hear Res 52:345–355.

    PubMed  CAS  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    PubMed  CAS  Google Scholar 

  • Probst R, Harris FP, Hauser R (1993) Clinical monitoring using otoacoustic emissions. Br J Audiol 27:85–90.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lavigne-Rebillard M (1992) Development of neurosensory structures in the human cochlea. Acta Otolaryngol 112:259–264.

    PubMed  CAS  Google Scholar 

  • Pujol R, Marty R (1968) Structural and physiological relationships of the maturing auditory system. In: Vilek L, Trojan S (eds) Ontogenesis of the Brain. Prague, Czechoslovakia: Charles University Press, pp. 377–385.

    Google Scholar 

  • Pujol R, Marty R (1970) Postnatal maturation in the cochlea of the cat. J Comp Neurol 139:115–126.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lavigne-RebiUard M, Uziel A (1991) Development of the human cochlea. Acta Otolaryngol Suppl 482:7–12.

    PubMed  CAS  Google Scholar 

  • Pujol R, Zajic G, Dulon D, Raphael Y, Altschuler RA, Schacht J (1991) First appearance and development of motile properties in outer hair cells isolated from the guinea pig cochlea. Hear Res 57:129–141.

    PubMed  CAS  Google Scholar 

  • Rebillard G, Rubel EW (1981) Electrophysiological study of the maturation of auditory responses from the inner ear of the chick. Brain Res 229:15–23.

    PubMed  CAS  Google Scholar 

  • Rebillard G, Ryals BM, Rubel EW (1982) Relationship between hair cell loss on the chick basilar papilla and threshold shift after acoustic overstimulation. Hear Res 8:77–81.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Saunders JC, Konkle DF (1979) The development of middle-ear admittance in the hamster. J Acoust Soc Am 66:133–139.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1979a) Effects of divalent cations on spontaneous and evoked activity of single mammalian auditory neurones. Pflügers Arch 380:7–12.

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1979b) Aberrant tonotopic organization in the inner ear damaged by kanamycin. J Acoust Soc Am 66:466–469.

    PubMed  CAS  Google Scholar 

  • Robertson D, Cody AR, Bredberg G, Johnstone BM (1980) Response properties of spiral ganglion neurons in cochleas damaged by direct mechanical trauma. J Acoust Soc Am 67:1295–1303.

    PubMed  CAS  Google Scholar 

  • Roe AW, Pallas SL, Jong-On H, Sur M (1990) A map of visual space induced in primary auditory cortex. Science 250:818–820.

    PubMed  CAS  Google Scholar 

  • Romand R (1971) Maturation des potentiels cochléaires dans la period périnatale chez le chat et chez le cobaye. J Physiol (Paris) 63:763–782.

    CAS  Google Scholar 

  • Romand R (1979) Development of auditory nerve activity in kittens. Brain Res 173:554–556.

    PubMed  CAS  Google Scholar 

  • Romand R (1983) Development of the cochlea. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 47–88.

    Google Scholar 

  • Romand R (1984) Functional properties of auditory nerve fibers during postnatal development in the kitten. Exp Brain Res 56:395–402.

    PubMed  CAS  Google Scholar 

  • Romand R (1987) Tonotopic evolution during development. Hear Res 28:117–123.

    PubMed  CAS  Google Scholar 

  • Romand R, Dauzat M (1981) Spontaneous activity and signal processing in the cochlear nerve of kittens. J Acoust Soc Am 69:S52.

    Google Scholar 

  • Romand R, Ehret G (1990) Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Dev Brain Res 54:221–234.

    CAS  Google Scholar 

  • Romand R, Despers G, Giry N (1987) Factors affecting the onset of inner ear function. Hear Res 28:1–7.

    PubMed  CAS  Google Scholar 

  • Roth B, Bruns S (1992) Postnatal development of the rat organ of Corti I. General morphology, basilar membrane, tectorial membrane and border cells. Anat Embryol 185:559–569.

    PubMed  CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Handbook of Sensory Physiology. Vol. IX. Development of Sensory Systems. New York: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Rubel EW, Ryals BM (1983) Development of the place principle: acoustic trauma. Science 219:512–514.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Smith DJ, Miller JC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of n. magnocellularis and n. laminaris. J Comp Neurol 166:469–489.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Lippe WR, Ryals BM (1984) Development of the place principle. Ann Otol Rhinol Laryngol 93:609–615.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Born DE, Deitch JS, Durham D (1985) Recent advances toward understanding auditory system development. In: Berlin C (ed) Hearing Science. San Diego, CA: College Hill Press, pp. 110–157.

    Google Scholar 

  • Rübsamen R (1987) Ontogenesis of the echolocation system in rufous horseshoe bat, Rhinolophus rouxi (audition and vocalization in early postnatal development). J Comp Physiol A Sens Neural Behav Physiol 161:899–913.

    Google Scholar 

  • Rübsamen R (1992) Postnatal development of central auditory frequency maps, J Comp Physiol A Sens Neural Behav Physiol 170:129–143.

    Google Scholar 

  • Rübsamen R, Schäfer M (1990a) Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A Sens Neural Behav Physiol 167:757–769.

    Google Scholar 

  • Rübsamen R, Schäfer M (1990b) Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats. J Comp Physiol A Sens Neural Behav Physiol 167:771–784.

    Google Scholar 

  • Rübsamen R, Neuweiler G, Marimuthu G (1989) Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code. J Comp Physiol A Sens Neural Behav Physiol 165:755–769.

    Google Scholar 

  • Rübsamen R, Mills DM, Rubel EW (1995) Effects of furosemide on distortion product otoacoustic emissions and on neuronal responses in the anteroventral cochlear nucleus. J Neurophysiol 74:1628–1638.

    PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    PubMed  CAS  Google Scholar 

  • Russell FA, Moore DR (1995) Afferent reorganization within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal. J Comp Neurol 352:607–625.

    PubMed  CAS  Google Scholar 

  • Ryals BM, Rubel EW (1985a) Differential susceptibility of avian hair cells to acoustic trauma. Hear Res 19:73–84.

    PubMed  CAS  Google Scholar 

  • Ryals BM, Rubel EW (1985b) Ontogenic changes in the position of hair cell loss after acoustic overstimulation in avian basilar papilla. Hear Res 19:135–142.

    PubMed  CAS  Google Scholar 

  • Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776.

    PubMed  CAS  Google Scholar 

  • Ryals BM, Creech HB, Rubel EW (1984) Postnatal changes in the size of the avian cochlear duct. Acta Otolaryngol 98:93–97.

    PubMed  CAS  Google Scholar 

  • Ryan AF (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK (1983) Energy dispersive x-ray analysis of inner ear fluids and tissue during the ontogeny of cochlear function. Scanning Electron Microsc 1:201–207.

    Google Scholar 

  • Ryan AF, Woolf NK (1988) Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study. Dev Brain Res 41:61–70.

    Google Scholar 

  • Rybak LP, Morizono T (1982) Effect of furosemide upon endolymph potassium concentration. Hear Res 7:223–231.

    PubMed  CAS  Google Scholar 

  • Rybak LP, Weberg A, Whitworth C (1991) Development of the stria vascularis in the rat. ORL (Basel) 53:72–77.

    CAS  Google Scholar 

  • Rybak LP, Whitworth C, Scott V, Weberg A (1991) Ototoxicity of furosemide during development. Laryngoscope 101:1167–1174.

    PubMed  CAS  Google Scholar 

  • Rybak LP, Whitworth C, Scott V (1992) Development of endocochlear potential and compound action potential in the rat. Hear Res 59:189–194.

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Saunders SS, Hashino E, Chen L (1994) Discharge patterns of chicken cochlear ganglion neurons following kanamycin-induced hair cell loss and regeneration. J Comp Physiol A Sens Neural Behav Physiol 174:351–369.

    CAS  Google Scholar 

  • Sanes DH (1993) The development of synaptic function and integration in the central auditory system. J Neurosci 13:2627–2637.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Merickel M, Rubel EW (1989) Evidence for an alternation of the tonotopic map in the gerbil cochlea during development. J Comp Neurol 279:436–445.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Coles RG, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 3–25.

    Google Scholar 

  • Saunders JC, Relkin EM, Rosowski JJ, Bahl C (1986) Changes in middle-ear input admittance during postnatal auditory development in chicks. Hear Res 24:227–235.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Doan DE, Cohen YE (1993) The contribution of middle-ear sound conduction to auditory development. Comp Biochem Physiol A Comp Physiol 106:7–13.

    CAS  Google Scholar 

  • Schacht J, Zenner HP (1987) Evidence that phosphoinositides mediate motility in cochlear outer hair cells. Hear Res 31:155–161.

    PubMed  CAS  Google Scholar 

  • Schäfer M (1991) Vergleichende Untersuchung zur Ontogenese von Frequenzkarten bei Säugetieren mit unterschiedlich spezialisiertem Hörsystem. Dissertation Fakultät für Biologie, Ruhr-Universität Bochum.

    Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequencies of pigeon primary auditory afferents with temperature. J Comp Physiol A Sens Neural Behav Physiol 156:209–211.

    Google Scholar 

  • Schmiedt RA (1989) Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: comparisons to cat data. Hear Res 42:23–35.

    PubMed  CAS  Google Scholar 

  • Schweitzer L, Lutz C, Hobbs M, Weaver SP (1996) Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hear Res 97:84–94.

    PubMed  CAS  Google Scholar 

  • Sellick R, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984a) The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats. Hear Res 14:305–314.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984b) Furosemide selectively reduces one component in rate-level functions from auditory nerve fibers. Hear Res 15:69–72.

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5:745–756.

    PubMed  CAS  Google Scholar 

  • Shatz CJ, Stryker MP (1988) Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242:87–89.

    PubMed  CAS  Google Scholar 

  • Shehata WE, Brownell WE, Dieler R (1991) Effects of salycilate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718.

    PubMed  CAS  Google Scholar 

  • Shnerson A, Pujol R (1981) Age related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Brain Res 254:65–75.

    PubMed  CAS  Google Scholar 

  • Shnerson A, Willott JF (1979) Development of inferior colliculus response properties in C57BL/6J mouse pubs. Exp Brain Res 37:373–385.

    PubMed  CAS  Google Scholar 

  • Shotwell SL, Jakobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10.

    PubMed  CAS  Google Scholar 

  • Slepecky N, Ulfendahl M (1992) Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res 57:201–215.

    PubMed  CAS  Google Scholar 

  • Slepecky N, Ulfendahl M, Flock Å (1988) Shortening and elongation of isolated outer hair cells in response to application of potassium gluconate, acetylcholine and cationized ferritin. Hear Res 34:119–126.

    PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1978) Effect of temperature on tuning properties of primary auditory fibres in caiman and cat. Pflügers Arch 373 Suppl:R84.

    Google Scholar 

  • Smolders JWT, Klinke R (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.). J Comp Physiol 155:19–30.

    Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463.

    PubMed  CAS  Google Scholar 

  • Sterbing JS, Schmidt U, Rübsamen R (1994) The postnatal development of frequency-place code and tuning characteristics in the auditory midbrain of the phyllostomid bat, Carollia perspicillata. Hear Res 76:133–146.

    PubMed  CAS  Google Scholar 

  • Stiebler IB, Narins PM (1990) Temperature-dependence of auditory nerve response properties in the frog. Hear Res 46:63–82.

    PubMed  CAS  Google Scholar 

  • Tasaki I, Davis H, Legouix JP (1952) The space-time pattern of the cochlear microphonics (guinea pig), as recorded by differential electrodes. J Acoust Soc Am 24:502–519.

    Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentiation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378:295–306.

    PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney M, Saunders JC, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Dev Biol 116:100–118.

    PubMed  CAS  Google Scholar 

  • Tokimoto T, Osako S, Matsuura S (1977) Development of auditory evoked cortical and brain stem responses during the early postnatal period in the cat. Osaka City Med J 23:141–153.

    PubMed  CAS  Google Scholar 

  • Tucci DL, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: effects of conductive and sensorineural hearing loss on n. magnocellularis. J Comp Neurol 238:371–381.

    PubMed  CAS  Google Scholar 

  • Uziel A, Romand R, Marot M (1981) Development of cochlear potentials in rats. Audiology 20:89–100.

    PubMed  CAS  Google Scholar 

  • van Dijk P, Lewis ER, Wit HP (1990) Temperature effects on auditory nerve fiber response in the American bullfrog. Hear Res 44:231–240.

    PubMed  Google Scholar 

  • Vater M, Rübsamen R (1989) Postnatal development of the cochlea in horseshoe bats. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. New York: Plenum, pp. 217–225.

    Google Scholar 

  • Verley R, Axelrad H (1977) Functional maturation of rat trigeminal nerve. Neurosci Lett 5:133–139.

    PubMed  CAS  Google Scholar 

  • Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM (1986) Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J Neurosci 6:218–233.

    PubMed  CAS  Google Scholar 

  • Waller H J, Godfrey DA (1994) Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro. J Neurophysiol 71:467–478.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J (1986) The development of function in the auditory periphery of cats. In: Altschuler RA, Bobbin RP, Hoffman DW (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 247–269.

    Google Scholar 

  • Walsh EJ, McGee J (1987) Postnatal development of auditory nerve and cochlear nucleus neuronal responses in kittens. Hear Res 28:97–116.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J (1990) Frequency selectivity in the auditory periphery: similarities between damaged and developing ears. Am J Otolaryngol 11:23–32.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, Romand R (1992) Functional development of the cochlea and cochlear nerve. In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 161–219.

    Google Scholar 

  • Weaver SP, Schweitzer L (1994) Development of gerbil outer hair cells after the onset of cochlear function: an ultrastructural study. Hear Res 72:44–52.

    PubMed  CAS  Google Scholar 

  • Weaver SP, Hoffpauir J, Schweitzer L (1994) Distribution of actin in developing outer hair cells in the gerbil. Hear Res 72:181–188.

    PubMed  CAS  Google Scholar 

  • Webster WR, Martin RL (1991) The development of frequency representation in the inferior colliculus of the kitten. Hear Res 55:70–80.

    PubMed  CAS  Google Scholar 

  • Webster WR, Aitkin LM (1975) Central auditory processing. In: Gazzaniga MS, Blakemore C (eds) Handbook of Psychobiology. New York: Academic Press, pp. 325–364.

    Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK, McCoy J (1996) Otoacoustic emissions: animal models and clinical observations. In: Van De Water TR, Popper AN, Fay RR (eds) Clinical Aspects of Hearing. New York: Springer-Verlag, pp. 199–257.

    Google Scholar 

  • Wilson JP (1980) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252.

    PubMed  CAS  Google Scholar 

  • Wong ROL (1993) The role of spatio-temporal firing patterns in neuronal development of sensory systems. Curr Opin Neurobiol 3:595–601.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1984) Development of auditory function in the cochlea of the Mongolian gerbil. Hear Res 13:277–283.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1985) Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the Mongolian gerbil. Dev Brain Res 17:131–147.

    Google Scholar 

  • Woolf NK, Ryan AF (1988) Contributions of the middle ear to the development of function in the cochlea. Hear Res 35:131–143.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF, Harris JP (1986) Development of mammalian endocochlear potential: normal ontogeny and effects of anoxia. Am J Physiol (Regulatory Integrative Comp Physiol 19) 250:R493–R498.

    PubMed  CAS  Google Scholar 

  • Wu SH, Oertel D (1987) Maturation of synapses and electrical properties of cells in the cochlear nucleus. Hear Res 30:99–110.

    PubMed  CAS  Google Scholar 

  • Yancey D, Dallos P (1985) Ontogenetic changes in cochlear characteristic frequency at a basal turn location as reflected in the summating potential. Hear Res 18:189–195.

    PubMed  CAS  Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39:282–300.

    PubMed  CAS  Google Scholar 

  • Yao X, ten-Cate WJF, Curtis LM, Rarey KE (1994) Expression of Na+, K+- ATPase α 1 subunit mRNA in the developing rat cochlea. Hear Res 80:31–37.

    PubMed  CAS  Google Scholar 

  • Zajic G, Anniko M, Schacht J (1983) Cellular localization of adenylate cyclase in the developing and mature inner ear of the mouse. Hear Res 10:249–261.

    PubMed  CAS  Google Scholar 

  • Zenner HP (1986a) K+-induced motility and depolarization of cochlear hair cells: direct evidence for a new pathophysiological mechanism in Ménière’s disease. Arch Otorhinolaryngol 243:108–111.

    PubMed  CAS  Google Scholar 

  • Zenner HP (1986b) Motile responses in outer hair cells. Hear Res 22:83–90.

    PubMed  CAS  Google Scholar 

  • Zenner HP, Zimmermann R, Gitter AH (1988) Active movements of the cuticular plate induce sensory hair motion in mammalian outer hair cells. Hear Res 34:233–240.

    PubMed  CAS  Google Scholar 

  • Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268.

    PubMed  CAS  Google Scholar 

  • Zimmer WM, Rosin DF, Saunders JC (1994) Middle-ear development. VI: Structural maturation of the rat conducting apparatus. Anat Rec 239:475–484.

    PubMed  CAS  Google Scholar 

  • Zirpel L, Lachica EA, Lippe WR (1995) Deafferentation increases the intracellular calcium of cochlear nucleus neurons in the embryonic chick. J Neurophysiol 74:1355–1357.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rübsamen, R., Lippe, W.R. (1998). The Development of Cochlear Function. In: Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Development of the Auditory System. Springer Handbook of Auditory Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2186-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2186-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7450-6

  • Online ISBN: 978-1-4612-2186-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics