Skip to main content

Development of Sensory and Neural Structures in the Mammalian Cochlea

  • Chapter
Development of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 9))

Abstract

During the last few decades, the structural and functional development of the cochlea has been extensively reviewed (Pujol and Hilding 1973; Rubel 1978; Romand 1983; Eggermont and Bock 1985; Pujol and Uziel 1988; Lim and Rueda 1992). This chapter does not attempt to be a general review but more specifically describes the maturation of sensory hair cells and their neural connections during in vivo development of the mammalian cochlea. An important part of this coverage concerns the ontogeny of the different types of cochlear synapses. Up until now, reviews on cochlear synapto-genesis have been either incomplete (Pujol 1986; Pujol and Sans 1986) or based on in vitro results (Sobkowicz 1992) that do not give a clear understanding of what occurs in vivo. We complement structural findings wherever possible with physiological correlations to present morphology at a functional rather than at a descriptive level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdouh A, Despres G, Romand R (1994) Histochemical and scanning electron microscopic studies of supernumerary hair cells in embryonic rat cochlea in vitro. Brain Res 660:181–191.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Reeks KA, Marangos PJ, Fex J (1985) Neuron-specific enolase-like immunoreactivity in inner hair cells but not outer hair cells in the guinea pig organ of Corti. Brain Res 327:379–384.

    PubMed  CAS  Google Scholar 

  • Anniko M (1983) Early development and maturation of the spiral ganglion. Acta Otolaryngol 95:263–276.

    PubMed  CAS  Google Scholar 

  • Bartolami S, Guiramand J, Lenoir M, Pujol R, Récasens M (1990) Carbachol-induced inositol phosphate formation during rat cochlea development. Hear Res 47:229–234.

    PubMed  CAS  Google Scholar 

  • Bartolami S, Planche M, Pujol R (1993) Characterization of muscarinic binding sites in the adult and developing rat cochlea. Neurochem Int 23:419–425.

    PubMed  CAS  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol Suppl 236:1–135.

    Google Scholar 

  • Brundin L, Flock A, Khanna SM, Ulfendahl M (1991) Frequency-specific position shift in the guinea pig organ of Corti. Neurosci Lett 128:77–80.

    PubMed  CAS  Google Scholar 

  • Cole KS, Robertson D (1992) Early efferent innervation of the developing rat cochlea studied with a carbocyanine dye. Brain Res 575:223–230.

    PubMed  CAS  Google Scholar 

  • Cotanche DA, Sulik KK (1984) The development of stereociliary bundles in the cochlear duct of chick embryos. Dev Brain Res 16:181–193.

    Google Scholar 

  • Chiong CM, Burgess BJ, Nadol JB (1993) Postnatal maturation of human spiral ganglion cells: light and electron microscopic observations. Hear Res 67:211–219.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Keller A (1996) Differential α enolase immunoreactivity in the two neuron types of the rat spiral ganglion during postnatal development. Comparison with neurofilament protein immunoreactivity. Aud Neurosci 2:33–46.

    CAS  Google Scholar 

  • Dechesne CJ, Pujol R (1986) Neuron-specific enolase immunoreactivity in the developing mouse cochlea. Hear Res 21:87–90.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Thomasset M (1988) Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear. Dev Brain Res 40:233–242.

    CAS  Google Scholar 

  • Dechesne CJ, Rabejac D, Desmadryl G (1994) Development of calretinin immunoreactivity in the mouse inner ear. J Comp Neurol 346:517–529.

    PubMed  CAS  Google Scholar 

  • Deol MS (1967) The neural crest and the acoustic ganglion. J Embryol Exp Morphol 17:533–541.

    PubMed  CAS  Google Scholar 

  • Eggermont J J, Bock GR (1985) Normal and abnormal development of hearing and its clinical implications. Acta Otolaryngol Suppl 421, pp. 1–128.

    Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715.

    PubMed  CAS  Google Scholar 

  • Emmerling MR, Sobkowicz HM (1988) Differentiation and distribution of acetylcholinesterase molecular forms in the mouse cochlea. Hear Res 32:137–146.

    PubMed  CAS  Google Scholar 

  • Etcheler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327.

    Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Nichols DH (1993) DiI reveals a prenatal arrival of efferents at the differentiating otocyst of mice. Hear Res 65:51–60.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Merchan-Cifuentes JA (1982) Histogenesis y desarrollo del receptor auditive In: Merchan-Cifuentes M (ed) El Oido Interno. Salamanca, Spain: Univ Salamanca Press, pp. 85–133.

    Google Scholar 

  • Gil-Loyzaga P, Parés-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 48:157–160.

    CAS  Google Scholar 

  • Gil-Loyzaga P, Pujol R (1988) Synaptophysin in the developing cochlea. Int J Dev Neurosci 6:155–160.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Pujol R (1990) Neurotoxicity of kainic acid in the rat cochlea during early developmental stages. Eur Arch Otorhinolaryngol 248:40–48.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Cupo A, Eybalin M (1988) Met-enkephalin and Met-enkephalin-Arg6-Gly7-Leu8 immunofluorescence in the developing guinea-pig organ of Corti. Dev Brain Res 42:142–145.

    CAS  Google Scholar 

  • Gil-Loyzaga P, Pujol R, Mollicone R, Dalix AM, Oriol R (1989) Appearance of B and H blood-group antigens in developing cochlear hair cells. Cell Tissue Res 257:17–21.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Remezal M, Oriol R (1992) Neuronal influence on B and H human blood-group antigen expression in rat cochlear cultures. Cell Tissue Res 269:13–20.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Remezal M, Mollicone R, Ibanez A, Oriol R (1994) H and B human blood-group antigen expression in cochlear hair cells is modulated by thyroxine. Cell Tissue Res 276:239–243.

    PubMed  CAS  Google Scholar 

  • Ginzberg RD, Morest DK (1984) Fine structure of cochlear innervation in the cat. Hear Res 14:109–127.

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Wild K, Brändle U, Fakler G, Fakler B, Zenner HP, Ruppersberg JR (1995) Cell-specific expression of the α9 n-Ach receptor subunit in auditory hair cells revealed by single-cell RT-PCR. Proc R Soc Lond Biol Sci 262:141–147.

    CAS  Google Scholar 

  • Hafidi A, Romand R (1989) First appearance of type II neurons during ontogenesis in the spiral ganglion of the rat. An immunocytochemical study. Dev Brain Res 48:143–149.

    CAS  Google Scholar 

  • Hafidi A, Després, G, Romand R (1993) Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. Int J Dev Neurosci 11:507–512.

    PubMed  CAS  Google Scholar 

  • Hasko JA, Richardson GP, Russell I J, Shaw G (1990) Transient expression of neurofilament protein during hair cell development in the mouse cochlea. Hear Res 45:63–74.

    PubMed  CAS  Google Scholar 

  • He DZZ, Evans BN, Dallos P (1994) First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear Res 78:77–90.

    PubMed  CAS  Google Scholar 

  • Hudspeth A J (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.

    PubMed  CAS  Google Scholar 

  • Igarashi Y (1980) Cochlea of the human fetus: a scanning electron microscope study. Arch Histol Jpn 43:195–209.

    PubMed  CAS  Google Scholar 

  • Janssen R, Schweitzer L, Jensen KF (1991) Glutamate neurotoxicity in the developing rat cochlea: physiological and morphological approaches. Brain Res 552:255–264.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR (1994) Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. J Comp Neurol 340:87–97.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Falzarano PR, Simpson TH (1994) Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J Comp Neurol 350:187–198.

    PubMed  CAS  Google Scholar 

  • Kawabata I, Nomura Y (1978) Extra-internal hair cells. A scanning electron microscopic study. Acta Otolaryngol 85:342–348.

    PubMed  CAS  Google Scholar 

  • Kelley MW, Xu XM, Wagner MA, Warchol ME, Corwin JT (1993) The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217:175–177.

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Hilding D (1965) The development of the organ of Corti in the mouse. Acta Otolaryngol 60:207–222.

    PubMed  CAS  Google Scholar 

  • Kozlowski DA, Jones TA, Schallert T (1994) Pruning of dendrites and restoration of function after brain damage: role of the NMD A receptor. Restorative Neurol Neurosci 7:119–126.

    CAS  Google Scholar 

  • Kraus H J, Aulbach-Kraus K (1981) Morphological changes in the cochlea of the mouse after the onset of hearing. Hear Res 4:89–102.

    PubMed  CAS  Google Scholar 

  • Lavigne-Rebillard M, Pujol R (1986) Development of the auditory hair cell surface in human fetuses. A scanning electron microscopy study. Anat Embryol 174:369–377.

    PubMed  CAS  Google Scholar 

  • Lavigne-Rebillard M, Pujol R (1988) Hair cell innervation in the fetal human cochlea. Acta Otolaryngol 105:398–402.

    PubMed  CAS  Google Scholar 

  • Lavigne-Rebillard M, Pujol R (1990) Auditory hair cells in human fetuses: synaptogenesis and ciliogenesis. J Electron Microsc Techn 15:115–122.

    CAS  Google Scholar 

  • Lavigne-Rebillard M, Cousillas H, Pujol R (1985) The very distal part of the basilar papilla in the chicken: a morphological approach. J Comp Neurol 238:340–347.

    PubMed  CAS  Google Scholar 

  • Lefebvre PP, Weber T, Leprince P, Rigo JM, Delrée P, Rogister B, Moonen G (1991) Kainate and NMDA toxicity for cultured developing and adult rat spiral ganglion neurons: further evidence for a glutamatergic excitatory neurotransmission at the inner hair cell synapse. Brain Res 555:75–83.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Shnerson A, Pujol R (1980) Cochlear receptor development in the rat with emphasis on synaptogenesis. Anat Embryol 160:253–262.

    PubMed  CAS  Google Scholar 

  • Lenoir M, Puel JL, Pujol R (1987) Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol 175:477–487.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980) Efferent synapses in the inner hair cell area of the cat cochlea: an electron microscopic study of serial sections. Hear Res 3:189–204.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1972) Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. Archiv Otolaryngol 96:199–215.

    CAS  Google Scholar 

  • Lim DJ, Anniko M (1985) Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. Acta Otolaryngol Suppl 422, pp. 1–69.

    PubMed  CAS  Google Scholar 

  • Lim DJ, Rueda J (1992) Structural development of the cochlea. In: Romand (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 33–58.

    Google Scholar 

  • Lorente de No R (1937) Sensory endings in the cochlea. Laryngoscope 47:373–377.

    Google Scholar 

  • Luo L, Brumm D, Ryan AF (1995) Distribution of non-NMDA glutamate receptor mRNAs in the developing rat cochlea. J Comp Neurol 361:372–382.

    PubMed  CAS  Google Scholar 

  • Mattson MP (1988) Neurotransmitters in the regulation of neuronal cytoarchitec ture. Brain Res Rev 13:179–212.

    CAS  Google Scholar 

  • Mbiène JP, Favre D, Sans A (1984) The pattern of ciliary development of the fetal mouse vestibular receptors: a qualitative and quantitative SEM study. Anat Embryol 170:229–238.

    PubMed  Google Scholar 

  • Merchan-Pérez A, Gil-Loyzaga P, Eybalin M (1990a) Immunocytochemical detection of calcitonin gene-related peptide in the postnatal developing rat cochlea. Int J Dev Neurosci 8:603–612.

    PubMed  Google Scholar 

  • Merchan-Pérez A, Gil-Loyzaga P, Eybalin M (1990b) Immunocytochemical detection of glutamate decarboxylase in the postnatal developing rat organ of Corti. Int J Dev Neurosci 8:613–620.

    PubMed  Google Scholar 

  • Merchan-Pérez A, Gil-Loyzaga P, Lopez-Sanchez J, Eybalin M, Valderrama F J (1993) Ontogeny of γ-aminobutyric acid in efferent fibers to the rat cochlea. Dev Brain Res 76:33–41.

    Google Scholar 

  • Merchan-Pérez A, Gil-Loyzaga P, Eybalin M, Fernandez-Mateos P, Bartolomé MV (1994) Choline-acetyltransferase-like immunoreactivity in the organ of Corti of the rat during postnatal development. Dev Brain Res 82:29–34.

    Google Scholar 

  • Mills DM, Norton S J, Rubel EW (1994) Development of active and passive mechanics in the mammalian cochlea. Aud Neurosci 1:77–99.

    Google Scholar 

  • Nakai Y, Hilding D (1968) Cochlear development. Some electron microscopic observations of maturation of hair cells, spiral ganglion and Reissner’s membrane. Acta Otolaryngol 66:369–385.

    PubMed  CAS  Google Scholar 

  • Perkins RE, Morest DK (1975) A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarski optics. J Comp Neurol 163:129–158.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Morphology and cross-linkage of stereocilia in the guinea pig labyrinth examined without the use of osmium as a fixative. Cell Tissue Res 237:43–48.

    PubMed  Google Scholar 

  • Pirvola U, Lehtonen E, Ylikoski J (1991) Spatiotemporal development of cochlear innervation and hair cell differentiation in the rat. Hear Res 52:345–355.

    PubMed  CAS  Google Scholar 

  • Puel JL, Safieddine S, Gervais d’Aldin C, Eybalin M, Pujol R (1995) Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C R Acad Sci Ser III Sci Vie 318:67–75.

    CAS  Google Scholar 

  • Pujol R (1986) Synaptic plasticity in the developing cochlea. In: Ruben RW, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. New York: Elsevier, pp. 47–54.

    Google Scholar 

  • Pujol R (1994) Lateral and medial efferents: a double neurochemical mechanism to protect and regulate inner and outer hair cell function in the cochlea. Br J Audiol 28:185–191.

    PubMed  CAS  Google Scholar 

  • Pujol R, Abonnenc M (1977) Receptor maturation and synaptogenesis in the golden hamster cochlea. Arch Otorhinolaryngol 217:1–12.

    PubMed  CAS  Google Scholar 

  • Pujol R, Hilding D (1973) Anatomy and physiology of the onset of auditory function. Acta Otolaryngol 76:1–11.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lavigne-Rebillard M (1985) Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti. Acta Otolaryngol Suppl 423:43–50.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lavigne-Rebillard M (1995) Sensory and neural structure in the developing human cochlea. Int J Pediatr Otorhinolaryngol 32:S177–S182.

    PubMed  Google Scholar 

  • Pujol R, Lenoir M (1986) The four types of synapses in the organ of Corti. In: Altschuler R, Bobbin R, Hoffman D (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 161–172.

    Google Scholar 

  • Pujol R, Marty R (1970) Postnatal maturation in the cochlea of the cat. J Comp Neurol 139:115–126.

    PubMed  CAS  Google Scholar 

  • Pujol R, Sans A (1986) Synaptogenesis in the mammalian inner ear. In: Aslin R (ed) Advances in Neural and Behavioral Development. Norwood, NJ: Ablex Press, pp. 1–18.

    Google Scholar 

  • Pujol R, Uziel A (1988) Auditory development: peripheral aspects. In: Meisami E, Timiras PS (eds). Handbook of Human Growth and Developmental Biology. Vol. I, part B. Boca Raton, FL: CRC Press, pp. 109–130.

    Google Scholar 

  • Pujol R, Carlier E, Devigne C (1978) Different patterns of cochlear innervation during the development in the kitten. J Comp Neurol 117:529–536.

    Google Scholar 

  • Pujol R, Carlier E, Devigne C (1979) Significance of presynaptic formations in the very early stages of cochlear synaptogenesis. Neurosci Lett 15:97–102.

    PubMed  CAS  Google Scholar 

  • Pujol R, Carlier E, Lenoir M (1980) Ontogenetic approach to inner and outer hair cells functions. Hear Res 2:423–430.

    PubMed  CAS  Google Scholar 

  • Pujol R, Shnerson A, Lenoir M, Deol MS (1983) Early degeneration of sensory and ganglion cells in the inner ear of mice with uncomplicated genetic deafness (dn): preliminary observations. Hear Res 12:57–63.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18:145–151.

    PubMed  CAS  Google Scholar 

  • Pujol R, Zajic G, Dulon D, Raphael Y, Altschuler RA, Schacht J (1991) First appearance and development of motile properties in outer hair cells isolated from guinea-pig cochlea. Hear Res 57:129–141.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lenoir M, Ladrech S, Tribillac F, Rebillard G (1992) Correlation between the length of outer hair cells and the frequency coding of the cochlea. In: Cazals Y, Demany L, Horner KC (eds) Auditory Physiology and Perception. Oxford, UK: Pergamon Press, pp. 45–52.

    Google Scholar 

  • Pujol R, Puel JL, Eybalin M (1992) Implication of non-NMDA and NMDA receptors in cochlear ischemia. NeuroReport 3:299–302.

    PubMed  CAS  Google Scholar 

  • Rabacchi S, Bailly Y, Delhaye-Bouchaud N, Mariani J (1992) Involvement of the N-methyl-d-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823–1825.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Marshak G, Barash A, Geiger B (1987) Modulation of intermediate filament expression in the developing cochlear epithelium. Differentiation 35:151–162.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Lenoir M, Wroblewski R, Pujol R (1991) The sensory epithelium and its innervation in the mole rat cochlea. J Comp Neurol 314:367–382.

    PubMed  CAS  Google Scholar 

  • Retzius G (1884) Gehörorgan des Wirbeltiere. II Das Gehörorgan der Reptilien, der Vögel, und der Säugetiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Robertson D, Harvey AR, Cole KS (1989) Postnatal development of the efferent innervation of the rat cochlea. Dev Brain Res 47:197–207.

    CAS  Google Scholar 

  • Romand R (1983) Development of the cochlea. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 47–88.

    Google Scholar 

  • Romand R, Romand MR (1982) Myelination kinetics of spiral ganglion cells in kitten. J Comp Neurol 204:1–5.

    PubMed  CAS  Google Scholar 

  • Romand R, Romand MR, Mulle C, Marty R (1980) Early stages of myelination in the spiral ganglion cells of the kitten during development. Acta Otolaryngol 90:391–397.

    PubMed  CAS  Google Scholar 

  • Roth B, Bruns V (1992) Postnatal development of the rat organ of Corti. Anat Embryol 185:571–581.

    PubMed  CAS  Google Scholar 

  • Roth B, Dannhof B, Bruns V (1991) ChAT-like immunoreactivity of olivocochlear fibers on rat outer hair cells during the postnatal development. Anat Embryol 183:483–489.

    PubMed  CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in vertebrate auditory system. In: Jacobson M (ed) Handbook of Sensory Physiology. Vol. IX. Development of Sensory Systems. Berlin: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol Suppl 220, pp. 1–44.

    Google Scholar 

  • Safieddine S, Bartolami S, Wenthold RJ, Eybalin M (1996) Pre- and postsynaptic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system. Mol Brain Res 40:127–135.

    PubMed  CAS  Google Scholar 

  • Sala C, Andreose JS, Fumagalli G, Løhmo T (1995) Calcitonin gene-related peptide: possible role in formation and maintenance of neuromuscular junctions. J Neurosci 15:520–528.

    PubMed  CAS  Google Scholar 

  • Sans A, Dechesne C (1985) Early development of vestibular receptors in human embryos: An electron microscopic study. Acta Otolaryngol Suppl 423:51–58.

    PubMed  CAS  Google Scholar 

  • Schwartz AM, Parakkal M, Gulley RL (1983) Postnatal development of spiral ganglion cells in the rat. Am J Anat 167:33–41.

    PubMed  CAS  Google Scholar 

  • Sher AE (1971) The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl 285, pp. 1–77.

    PubMed  CAS  Google Scholar 

  • Shnerson A, Devigne C, Pujol R (1982) Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Dev Brain Res 2:77–78.

    Google Scholar 

  • Shnerson A, Lenoir M, Van De Water TR, Pujol R (1983) The pattern of sensori-neural degeneration in the cochlea of the deaf Shaker-1 mouse: ultrastructural observations. Dev Brain Res 9:305–315.

    Google Scholar 

  • Simmons DD (1994) A transient afferent innervation of outer hair cells in the postnatal cochlea. NeuroReport 5:1309–1312.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Manson-Gieseke L, Hendrix TW, McCarter S (1990) Reconstructions of efferent fibers in the postnatal hamster cochlea. Hear Res 49:127–140.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Manson-Gieseke L, Hendrix TW, Morris K, Williams SJ (1991) Postnatal maturation of spiral ganglion neurons: a horseradish peroxidase study. Hear Res 55:81–91.

    PubMed  CAS  Google Scholar 

  • Sobin A, Anniko M (1984) Early development of cochlear hair cell stereociliary surface morphology. Arch Otorhinolaryngol 241:55–64.

    PubMed  CAS  Google Scholar 

  • Sobkowicz HM (1992) The development of innervation in the organ of Corti In: Romand R (ed) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier, pp. 59–100.

    Google Scholar 

  • Sobkowicz HM, Emmerling MR (1989) Development of acetylcholinesterase-positive neuronal pathways in the cochlea of the mouse. J Neurocytol 18:209–224.

    PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Slapnick SM (1992) Neuronal sprouting and synapse formation in response to injury in the mouse organ of Corti in culture. Int J Dev Neurosci 10:545–566.

    PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GE, Slapnick SM (1982) Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 2:942–957.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1969) Innervation patterns of the organ of Corti of the cat. Acta Otolaryngol 67:239–254.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1979) Neural connections of the outer hair cell system. Acta Otolaryngol 87:381–387.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1985) Nerve proliferation in the cochlea. In: Nomura Y (ed) Hearing Loss and Dizziness. Tokyo: Igaku-Shoin, pp. 68–82.

    Google Scholar 

  • Strelioff D, Flock A (1984) Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hear Res 15:19–28.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Sakai N, Terayama Y (1979) Organ of Corti in the human fetus. Scanning and transmission electron microscope studies. Ann Otol Rhinol Laryngol 88:749–758.

    PubMed  CAS  Google Scholar 

  • Tello JF (1931) Le réticule des cellules ciliées du labyrinthe chez la souris et son indépendance des terminaisons nerveuses de la Ville paire. Trav Lab Rech Biol Univ Madrid 27:151–186.

    Google Scholar 

  • Tilney LG, Cotanche DA, Tilney MS (1992) Actin filaments, stereocilia and hair cells of the bird cochlea. IV. How the number and arrangement of stereocilia are determined. Development 116:213–226.

    PubMed  CAS  Google Scholar 

  • Tohyama Y, Kiyama H, Kitajiri M, Yamashita T, Kumazawa T, Tohyama M (1989) Ontogeny of calcitonin gene-related peptide in the organ of Corti of the rat. Dev Brain Res 45:309–312.

    CAS  Google Scholar 

  • Uziel A, Gabrion J, Ohresser M, Legrand C (1981) Effects of hypothyroidism on the structural development of the organ of Corti in the rat. Acta Otolaryngol 92:469–480.

    PubMed  CAS  Google Scholar 

  • Uziel A, Pujol R, Legrand C, Legrand J (1983) Cochlear synaptogenesis in the hypothyroid rat. Dev Brain Res 7:295–301.

    Google Scholar 

  • Vago R, Ripoll C, Tournebize R, Lenoir M (1996) Distribution of actin and tubulin in outer hair cells isolated from developing rat cochlea: a quantitative study. Eur J Cell Biol 69:308–315.

    PubMed  CAS  Google Scholar 

  • Van De Water TR (1976) Effects of removal of the statoacoustic ganglion complex upon the growing otocyst. Ann Otol Rhinol Laryngol 85:Suppl 33:1–32.

    Google Scholar 

  • Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379.

    PubMed  CAS  Google Scholar 

  • Vater M, Lenoir M, Pujol R (1992) Ultrastructure of the horseshoe bat organ of Corti. II. Transmission electron microscopy. J Comp Neurol 318:380–391.

    PubMed  CAS  Google Scholar 

  • Vater M, Lenoir M, Pujol R (1997) Development of the organ of Corti in horseshoe bats: scanning and transmission electron microscopy. J Comp Neurol 377:520–534.

    PubMed  CAS  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155.

    PubMed  CAS  Google Scholar 

  • Weaver SP, Schweitzer L (1994) Development of gerbil outer hair cells after the onset of cochlear function: an ultrastructural study. Hear Res 72:44–52.

    PubMed  CAS  Google Scholar 

  • Weaver SP, Hoffpauir J, Schweitzer L (1994) Distribution of actin in developing outer hair cells in the gerbil. Hear Res 72:181–188.

    PubMed  CAS  Google Scholar 

  • Whitlon DS, Sobkowicz HM (1988) Neuron-specific enolase during the development of the organ of Corti. Int J Dev Neurosci 6:77–87.

    PubMed  CAS  Google Scholar 

  • Whitlon DS, Sobkowicz HM (1989) GABA-like immunoreactivity in the cochlea of the developing mouse. J Neurocytol 18:505–518.

    PubMed  CAS  Google Scholar 

  • Wikström SO, Anniko M (1987) Early development of the stato-acoustic and facial ganglia. Acta Otolaryngol 104:166–174.

    PubMed  Google Scholar 

  • Wolff JR, Joo F, Dames W (1978) Plasticity in dendrites shown by continuous GABA administration in superior cervical ganglion of adult rat. Nature 274:72–74.

    PubMed  CAS  Google Scholar 

  • Wright A (1984) Dimensions of the cochlear stereocilia in man and the guinea pig. Hear Res 13:89–98.

    PubMed  CAS  Google Scholar 

  • Zhou SL, Pickles JO (1994) Early hair-cell degeneration in the extreme apex of the guinea pig cochlea. Hear Res 79:147–160.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Pujol, R., Lavigne-Rebillard, M., Lenoir, M. (1998). Development of Sensory and Neural Structures in the Mammalian Cochlea. In: Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Development of the Auditory System. Springer Handbook of Auditory Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2186-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2186-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7450-6

  • Online ISBN: 978-1-4612-2186-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics