Skip to main content

Strategies for Uncovering the Kinetics of Nucleoside Transport and Metabolism in Capillary Endothelial Cells

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

For the analysis of signals obtained by external detection techniques such as positron tomographic imaging (PET), magnetic resonance imaging (MRI), and X-ray computed tomography (X-ray CT), investigators and diagnosticians usually obtain a sequence of images. For physiological interpretation in terms of the underlying physical and chemical events, it is essential to use models when one wants to learn more than the simplest measures. Among the simplest measures one can often include volume and flow estimates, but not always, for it commonly occurs that the distinctive estimation of these two parameters simultaneously requires using knowledge of the anatomy or of other properties of the tissue. The two most accessible measures of indicator transport are the areas under dilution curves and their mean transit times following a pulse injection. Mass conservation for substances that are not destroyed, such as radioactive tracers, relies on the general expression:

$$q(t){\text{ = }}F\int_0^t {{C_{in}}} \;dt{\text{ - }}F\int_0^t {{C_{out}}} \;dt,$$

, where q(t) represents the mass of indicator in the tissue at time t, F is the flow of indicator-containing fluid, and Cin(t) and Cout(t) represent the concentration-time curves for the indicator at the inflow and outflow. Such expressions represent whole organ behavior exactly when the organ is supplied by a single artery and drained by a single vein. When there are multiple inlets and multiple outlets, then the first term on the right is replaced by a sum of similar terms for each inlet, and likewise the second term on the right is replaced by a similar sum of the outputs (Lassen and Perl, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achs, M. J. and D. Garfinkel. Computer simulation of energy metabolism in anoxic perfused rat heart. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 1):R164–R174, 1977.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B. Plasma indicator dispersion in arteries of the human leg. Circ. Res. 19:332–346, 1966.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B. Blood flow and diffusion through mammalian organs. Science 167:1347–1353, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B. A concurrent flow model for extraction during transcapillary passage. Circ. Res. 35:483–503, 1974.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B. Physiological heterogeneity: Fractals link determinism and randomness in structures and functions. News Physiol. Sci. 3:5–10, 1988.

    PubMed  Google Scholar 

  • Bassingthwaighte, J. B. and R. P. Beyer. Fractal correlation in heterogeneous systems. Physica D 53:71–84, 1991.

    Article  Google Scholar 

  • Bassingthwaighte, J. B. and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology. Section 2, The Cardiovascular System. Vol. IV, The Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, pp. 539–626.

    Google Scholar 

  • Bassingthwaighte, J. B., T. J. Knopp, and D. U. Anderson. Flow estimation by indicator dilution (bolus injection): Reduction of errors due to time-averaged sampling during unsteady flow. Circ. Res. 27:277–291, 1970.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989a.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Blood-tissue exchange via transport and transformation by endothelial cells. Circ. Res. 65:997–1020, 1989b.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood-tissue exchange. Ann. Biomed. Eng. 20:687–725, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Beard, D., and J. B. Bassingthwaighte. Fractal nature of myocardial blood flow described by whole organ model of arterial network. Ann. Biomed. Eng. 22 (Suppl. 1):20, 1994.

    Google Scholar 

  • Bohr, C. Ãœber die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22:221–280, 1909.

    Google Scholar 

  • Bronikowski, T. A., J. H. Linehan, and C. A. Dawson. A mathematical analysis of the influence of perfusion heterogeneity on indicator extraction. Math. Biosci. 52:27–51, 1980.

    Article  Google Scholar 

  • Caldwell, J. H., G. V. Martin, G. M. Raymond, and J. B. Bassingthwaighte. Regional myocardial flow and capillary permeability-surface area products are nearly proportional. Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H654–H666, 1994.

    PubMed  CAS  Google Scholar 

  • Catravas, J. D., J. B. Bassingthwaighte, and H. V. Sparks, Jr. Adenosine transport and uptake by cardiac and pulmonary endothelial cells. In: Endothelial Cells, Vol. I, edited by U. S. Ryan. Boca Raton, FL: CRC Press, 1988, pp. 65–84.

    Google Scholar 

  • Crone, C., J. Frøkjaer-Jensen, J. J. Friedman, and O. Christensen. The permeability of single capillaries to potassium ions. J. Gen. Physiol. 71:195–220, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Glenny, R. W. and H. T. Robertson. A computer simulation of pulmonary perfusion in three dimensions. J. Appl. Physiol. 79:357–369, 1995.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A. and A. J. Schwab. Flow, cell entry, and metabolic disposal: Their interactions in hepatic uptake. In: The Liver: Biology and Pathobiology, 2nd ed., edited by I. M. Arias. New York: Raven, 1988, pp. 807–832.

    Google Scholar 

  • Goresky, C. A., W. H. Ziegler, and G. G. Bach. Capillary exchange modeling: Barrierlimited and flow-limited distribution. Circ. Res. 27:739–764, 1970.

    PubMed  CAS  Google Scholar 

  • Kassab, G. S., C. A. Rider, N. J. Tang, and Y. B. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H350–H365, 1993.

    PubMed  CAS  Google Scholar 

  • King, R. B., A. Deussen, G. R. Raymond, and J. B. Bassingthwaighte. A vascular transport operator. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H2196–H2208, 1993.

    PubMed  CAS  Google Scholar 

  • King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng. 24:352–372, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Koiwa, Y., R. C. Bahn, and E. L. Ritman. Regional myocardial volume perfused by the coronary artery branch: Estimation in vivo. Circulation 74:157–163, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kroll, K., T. R. Bukowski, L. M. Schwartz, D. Knoepfler, and J. B. Bassingthwaighte. Capillary endothelial transport of uric acid in the guinea pig heart. Am. J. Physiol. (Heart Circ. Physiol. 31) 262:H420–H431, 1992.

    CAS  Google Scholar 

  • Kuikka, J., M. Levin, and J. B. Bassingthwaighte. Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250 (Heart Circ. Physiol. 19):H29–H42, 1986.

    PubMed  CAS  Google Scholar 

  • Lassen, N. A. and W. Perl. Tracer Kinetic Methods in Medical Physiology. New York: Raven, 1979.

    Google Scholar 

  • Linehan, J. H., T. A. Bronikowski, and C. A. Dawson. Kinetics of uptake and metabolism by endothelial cell from indicator dilution data. Ann. Biomed. Eng. 15:201–215, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden, C. J. and M. Silverman. Exchange of multiple indicators across renal-like epithelia: A modeling study of six physiological regimes. Am. J. Physiol. 251 (Renal. Fluid. Elect. Physiol. 20):F1073–F1089, 1986.

    PubMed  CAS  Google Scholar 

  • Maseri, A. P., S. Caldini, S. Permutt, and K. L. Zierler. Frequency function of transit times through dog pulmonary circulation. Circ. Res. 26:527–543, 1970.

    PubMed  CAS  Google Scholar 

  • Palsson, B. O., A. Joshi, and S. Ozturk. Reducing complexity in metabolic networks: Making metabolic meshes manageable. Fed. Proc. 46:2485–2489, 1987.

    PubMed  CAS  Google Scholar 

  • Prinzen, T. T., T. Arts, F. W. Prinzen, and R. S. Reneman. Mapping of epicardial deformation using a video processing technique. J. Biomechanics 19:263–273, 1986.

    Article  CAS  Google Scholar 

  • Rose, C. P. and C. A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ. Res. 39:541–554, 1976.

    PubMed  CAS  Google Scholar 

  • Rose, C. P., C. A. Goresky, and G. G. Bach. The capillary and sarcolemmal barriers in the heart: An exploration of labeled water permeability. Circ. Res. 41:515–533, 1977.

    PubMed  CAS  Google Scholar 

  • Sangren, W. C. and C. W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys. 15:387–394.

    Google Scholar 

  • Sapirstein, L. A. Regional blood flow by fractional distribution of indicators. Am. J. Physiol. 193:161–168. 1958.

    PubMed  CAS  Google Scholar 

  • Thompson, H. K., C. F. Starmer, R. E. Whalen, and H. D. Mcintosh. Indicator transit time considered as a gamma variate. Circ. Res. 14:502–515, 1964.

    PubMed  Google Scholar 

  • van Beek, J. H. G. M., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257 (Heart Circ. Physiol. 26):H1670–H1680, 1989.

    PubMed  Google Scholar 

  • Wangler, R. D., M. W. Gorman, C. Y. Wang, D. F. DeWitt, I. S. Chan, J. B. Bassingthwaighte, and H. V. Sparks. Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am. J. Physiol. 257 (Heart Circ. Physiol. 26):H89–H106, 1989.

    PubMed  CAS  Google Scholar 

  • Yipintsoi, T., P. D. Scanlon, and J. B. Bassingthwaighte. Density and water content of dog ventricular myocardium. Proc. Soc. Exp. Biol. Med. 141:1032–1035, 1972.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bassingthwaighte, J.B., Kroll, K., Schwartz, L.M., Raymond, G.M., King, R.B. (1998). Strategies for Uncovering the Kinetics of Nucleoside Transport and Metabolism in Capillary Endothelial Cells. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics