Skip to main content

Lipophilic Amines as Probes for Measurement of Lung Capillary Transport Function and Tissue Composition Using the Multiple-Indicator Dilution Method

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

We have exploited the rapidly equilibrating interactions of nonbasic lipophilic amines such as l4C-diazepam and 3H-alfentanil with lung tissue to estimate the perfused lung tissue water/lipoid space ratio, and to develop a method for estimating the pulmonary capillary transit time distribution using the bolus-injection multiple-indicator dilution technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M.W., T.C. Orton, R.D. Pickett, and T.E. Eling. Accumulation of amines in the isolated perfused rabbit lungs. J. Pharmacol Exp. Ther. 189:456–466, 1974.

    PubMed  CAS  Google Scholar 

  2. Audi, S.H., G.S. Krenz, J.H. Linehan, D.A. Rickaby, and C.A. Dawson. Pulmonary capillary transport function from flow-limited indicators. J. Appl. Physiol. 77:332–351, 1994.

    PubMed  CAS  Google Scholar 

  3. Audi, S.H., J.H. Linehan, G.S. Krenz, C.A. Dawson, S.B. Ahlf, and L.D. Roerig. Estimation of the pulmonary capillary transport function in isolated rabbit lungs. J. Appl. Physiol. 78:1004–1014, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Ayappa, I., L.V. Brown, P.M. Wang, and S.J. Lai-Fook. Arterial, capillary, and venous transit times and dispersion measured in isolated rabbit lungs. J. Appl. Physiol. 79:261–269, 1995.

    PubMed  CAS  Google Scholar 

  5. Bachofen, H., D. Wangensteen, and E.R. Weibel. Surfaces and volumes of alveolar tissue under zone II and zone III conditions. J. Appl. Physiol. 53:879–885, 1982.

    PubMed  CAS  Google Scholar 

  6. Bassingthwaighte, J.B. Plasma indicator dispersion in arteries of the human leg. Circ. Res. 19:332–346, 1966.

    PubMed  CAS  Google Scholar 

  7. Bassingthwaighte, J.B., F.H. Ackerman, and E.H. Wood. Application of the Lagged Normal Density curve as a model for arterial dilution curve. Circ. Res. 18:398–415, 1966.

    PubMed  CAS  Google Scholar 

  8. Bassingthwaighte, J.B. and C.A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology, Section 2, The Cardiovascular System, Volume IV, Microcirculation, Part 1, edited by E.M. Renkin and C.C. Michel. Bethesda, MD: Amer. Physiol. Soc., 1984, pp. 549–626.

    Google Scholar 

  9. Brashear, R.E., J.C. Ross, and W.J. Daly. Pulmonary diffusion and capillary blood volume in dogs at rest and with exercise. J. Appl. Physiol. 21:516–520, 1966.

    PubMed  CAS  Google Scholar 

  10. Brody, J.S., E.J. Stemmler, and A.B. Dubois. Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries and veins. J. Clin. Invest. 47:783–799, 1968.

    Article  PubMed  CAS  Google Scholar 

  11. Bronikowski, T.A., C.A. Dawson, and J.H. Linehan. On indicator dilution and perfusion heterogeneity: A stochastic model. Math. Biosci. 83:199–225, 1987.

    Article  Google Scholar 

  12. Bronikowski, T.A., C.A. Dawson, and J.H. Linehan. Model-free deconvolution techniques for estimating vascular transport functions. Int. J. Bio-Medical Computing. 14:411–429, 1983.

    Article  CAS  Google Scholar 

  13. Capen, R.L., W.L. Hanson, L.P. Latham, C.A. Dawson, and W.W. Wagner, Jr. Distribution of pulmonary capillary transit times in recruited networks. J. Appl. Physiol. 69:473–478, 1990.

    PubMed  CAS  Google Scholar 

  14. Capen, R.L., L.P. Latham, and W.W. Wagner, Jr. Comparison of direct and indirect measurements of pulmonary capillary transit times. J. Appl. Physiol. 62:1150–1154, 1987.

    PubMed  CAS  Google Scholar 

  15. Chinard, F.P. and W.O. Cua. Endothelial extraction of tracer water varies with extravascular water in dog lungs. Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H340–H348, 1987.

    PubMed  CAS  Google Scholar 

  16. Crapo, J.D., R.O. Crapo, R.L. Jensen, R.R. Mercer, and E.R. Weibel. Evaluation of lung diffusing capacity by physiological and morphometric techniques. J. Appl. Physiol. 64:2083–2091, 1988.

    PubMed  CAS  Google Scholar 

  17. Crapo, R.O., J.D. Crapo, and A.H. Morris. Lung tissue and capillary blood volumes by rebreathing and morphometric techniques. Resp. Physiol. 49:175–186, 1982.

    Article  CAS  Google Scholar 

  18. Cree, E.M., D.F. Benfield, and H.K. Rasmussen. Differential lung diffusion, capillary volume and compliance in dogs. J. Appl. Physiol. 25:186–190, 1968.

    PubMed  CAS  Google Scholar 

  19. Crone, C. Permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol. Scand. 48:292–305, 1963.

    Article  Google Scholar 

  20. Cua, W.O., G. Basset, F. Bouchonnet, R.A. Carrick, G. Saumon, and F.P. Chinard. Endothelial and epithelial permeabilities to antipyrine in rat and dog lungs. Am. J. Physiol. 258 (Heart Circ. Physiol. 27):H1321–H1333, 1990.

    PubMed  CAS  Google Scholar 

  21. Dawson, C.A., D.A. Rickaby, J.H. Linehan, and T.A. Bronikowski. Distribution of vascular volume and compliance in the lung. J. Appl. Physiol. 64:266–273, 1988.

    PubMed  CAS  Google Scholar 

  22. Dawson, C.A., D.L. Roerig, D.A. Rickaby, L.D. Nelin, J.H. Linehan, and G.S. Krenz. Use of diazepam for interpreting changes in extravascular lung water. J. Appl. Physiol. 72:686–693, 1992.

    PubMed  CAS  Google Scholar 

  23. Fung, Y.C. and S.S. Sobin. Pulmonary alveolar blood flow. Circ. Res. 30:470–490, 1972.

    PubMed  CAS  Google Scholar 

  24. Gear, C.W. Numerical Initial-Value Problems in Ordinary Differential Equations. En-glewood Cliffs, NJ: Prentice-Hall, 1971.

    Google Scholar 

  25. Goresky, C.A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.

    PubMed  CAS  Google Scholar 

  26. Goresky, C.A., R.F.P. Cronin, and B.E. Wangel. Indicator dilution measurements of extravascular water in the lungs. J. Clin. Invest. 48:487–501, 1969.

    Article  PubMed  CAS  Google Scholar 

  27. Goresky, C.A. and M. Silverman. Effect of connection of catheter distortion on calculated liver sinusoidal volumes. Am. J. Physiol. 207:883–892, 1964.

    PubMed  CAS  Google Scholar 

  28. Goresky, C.A., W.H. Ziegler, and G.G. Bach. Capillary permeability, barrier-limited and flow-limited distribution. Circ. Res. 27:739–764, 1970.

    PubMed  CAS  Google Scholar 

  29. Harris, T.R. and E.V. Newman. An analysis of mathematical models of circulatory indicator dilution curves. J. Appl. Physiol. 28:840–850, 1970.

    PubMed  CAS  Google Scholar 

  30. Haworth, S.T., J.H. Linehan, T.A. Bronikowski, and C.A. Dawson. A hemodynamic model representation of the dog lung. J. Appl. Physiol. 70:15–26, 1991.

    PubMed  CAS  Google Scholar 

  31. Hogg, J.C., T. McLean, B.A. Martin, and B. Wiggs. Erythrocyte transit and neutrophil concentration in dog lung. J. Appl. Physiol. 65:1217–1225, 1988.

    PubMed  CAS  Google Scholar 

  32. Jouasset-Strieder, D., J.M. Cahill, and J.J. Byrne. Pulmonary capillary blood volume in dogs during shock and after retransfusion. J. Appl. Physiol. 21:365–369, 1966.

    PubMed  CAS  Google Scholar 

  33. Jouasset-Strieder, D., J.M. Cahill, J.J. Byrne, and E.A. Gaensler. Pulmonary diffusing capacity and capillary blood volume in normal and anemic dogs. J. Appl. Physiol. 20:113–116, 1965.

    PubMed  CAS  Google Scholar 

  34. Kotrly, K.J., D.L. Roerig, S.B. Ahlf, and J.P. Kampine. First pass uptake of lidocaine, diazepam and thiopental in human lung. Anesth. Anal 67:5119, 1988.

    Article  Google Scholar 

  35. Kuhnle, G.E.H., F.H. Leipfinger, and A.E. Goetz. Measurement of microhemo-dynamics in the ventilated rabbit lung by intravital fluorescence microscopy. J. Appl. Physiol. 74:1462–1471, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Linehan, J.H., T.A. Bronikowski, and C.A. Dawson. Kinetics of uptake and metabolism by endothelial cells from indicator dilution data. Ann. of Biomed. Eng. 15:201–215, 1987.

    Article  CAS  Google Scholar 

  37. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11:431–441, 1963.

    Article  Google Scholar 

  38. Piiper, J. Attempts to determine volume compliance and resistance to flow of pulmonary vascular compartments. Prog. Resp. Res. 5:40–52, 1970.

    Google Scholar 

  39. Roerig, D.L., R.R. Dahl, C.A. Dawson, and R.I.H. Wang. Uptake of 1-α-acetyl-methadol (LAAM) and its analgesically active metabolites, nor-LAAM and dinor-LAAM in the isolated perfused rat lung. Drug Metab. Dispos. 11:411–416, 1983.

    PubMed  CAS  Google Scholar 

  40. Roerig, D.L., R.R. Dahl, C.A. Dawson, and R.I.H. Wang. Effect of protein binding on the uptake and efflux of methadone and diazepam in the isolated perfused rat lung. Drug Metab. Dispos. 12:536–542, 1984.

    PubMed  CAS  Google Scholar 

  41. Roerig, D.L., K.J. Kotrly, C.A. Dawson, S.B. Ahlf, J.F. Gaultieri, and J.P. Kampine. First pass uptake of verapamil, diazepam and thiopental in the human lung. Anesth. Anal. 69:461–466, 1989.

    Article  CAS  Google Scholar 

  42. Rose, C.P. and C.A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ. Res. 39:541–554, 1976.

    PubMed  CAS  Google Scholar 

  43. Staub, N.C. and E.L. Schultz. Pulmonary capillary length in dog, cat and rabbit. Respi. Physiol. 5:371–378, 1968.

    Article  CAS  Google Scholar 

  44. Schwab, A.J., F. Barker III, C.A. Goresky, and K.S. Pang. Transfer of enalaprilat across rat liver cell membranes is barrier limited. Am. J. Physiol. 258 (Gastrointest. Liver Physiol. 21):G461–G475, 1990.

    PubMed  CAS  Google Scholar 

  45. Siegwart, B., P. Gehn, J. Gil, and E.R. Weibel. Morphometric estimation of pulmonary diffusing capacity. Resp. Physiol. 13:141–159, 1971.

    Article  CAS  Google Scholar 

  46. Wang, P.M., C.D. Fike, M.R. Kaplowitz, L.V. Brown, I. Ayappa, M. Jahed, and S.J. Lai-Fook. Effects of lung inflation and blood flow on capillary transit time in isolated rabbit lungs. J. Appl. Physiol. 72:2420–2427, 1992.

    PubMed  CAS  Google Scholar 

  47. Wang, P.M., Q.H. Yang, and S.J. Lai-Fook. Effect of positive airway pressure on capillary transit time in rabbit lung. J. Appl. Physiol. 69:2262–2268, 1990.

    PubMed  CAS  Google Scholar 

  48. Wanner, A., R. Begin, M. Cohen, and M.A. Sackner. Vascular volumes of the pulmonary circulation in intact dogs. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 44:956–963, 1978.

    CAS  Google Scholar 

  49. Weibel, E.R. and J. Gil. Structure-function relationships at the alveolar level. In: Lung Biology in Health and Disease, Vol. 3: Bioengineering Aspects of the Lung, edited by J.B. West. New York: Marcel Dekker, 1977, pp. 1–81.

    Google Scholar 

  50. Young, R.C., Jr., H. Nagano, T.R. Vaughn, Jr., and N. Staub. Pulmonary capillary blood volume in dogs; effects 5-hydroxytryptamine. J. Appl. Physiol. 18:264–268, 1963.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Audi, S.H., Linehan, J.H., Krenz, G.S., Roerig, D.L., Ahlf, S.B., Dawson, C.A. (1998). Lipophilic Amines as Probes for Measurement of Lung Capillary Transport Function and Tissue Composition Using the Multiple-Indicator Dilution Method. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics