Skip to main content

A Generalized Mathematical Theory of the Multiple-Indicator Dilution Method

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

Tracer techniques have proven to be invaluable for the quantitative assessment of metabolic and biological transport processes. The multiple-indicator dilution technique as a special form of a tracer method is particularly suitable for the study of relatively rapid processes occurring in intact organs. In the previous chapters, the principles and some important applications of the multiple-indicator dilution technique have been addressed. In this chapter, a more detailed analysis of the mathematical foundations of this technique will be presented. This allows us to put this technique in a more general framework of tracer analysis, yielding a systematic approach to finding numerical solutions that apply in a more general way, whereas the analytical solutions presented in Chapter 13 are applicable only in simpler cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ. Res. 65:997–1020, 1989.

    PubMed  CAS  Google Scholar 

  • Bracht, A., A. Kelmer-Bracht, A. Schwab, and R. Scholz. Transport of inorganic anions in perfused rat liver. Eur. J. Biochem. 114:471–479, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Bracht, A., A. J. Schwab, and R. Scholz. Untersuchungen von Fluβgeschwindigkeiten in der isolierten perfundierten Rattenleber durch Pulsmarkierung mit radioaktiven Substraten und mathematischer Analyse der Auswaschkinetiken. Hoppe-Seyle’s Z. Physiol. Chem. 361:357–377, 1980.

    Article  CAS  Google Scholar 

  • Clogh, A. V., D. Cui, J. H. Linehan, G. S. Krenz, C. A. Dawson, and M. B. Maron. Modelfree nunerical deconvolution of recirculating indicator concentration curves. J. Appl. Physiol. 74:1444–1453, 1993.

    Google Scholar 

  • Cobelli, C. and J. J. DiStefano. Parameter and structural identifiability concepts and ambiguities—A critical review and analysis. Am. J. Physiol. 239:R7–R24, 1980.

    PubMed  CAS  Google Scholar 

  • Dyson, R. D. and I. Isenberg. Analysis of exponential curves by a method of moments, with special attention to sedimentation equilibrium and fluorescence decay. Biochemistry 10:3233–3241, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Forker, E. L. and Z.-C. Cai. Mathematical modeling as strategy for understanding hepatic transport of organic solutes. In: Hepatic Transport and Bile Secretion: Physiology and Pathophysiology, edited by N. Tavaloni and P. D. Berk. New York: Raven Press, pp. 41–53, 1993.

    Google Scholar 

  • Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A., W. H. Ziegler, and G. G. Bach. Capillary exchange modeling: Barrierlimited and flow-limited distribution. Circ. Res. 27:739–764, 1970.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A., G. G. Bach, and B. E. Nadeau. On the uptake of material by intact liver. The transport and net removal of galactose. J. Clin. Invest. 52:975–990, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Goresky, C. A., G. G. Bach, and B. E. Nadeau. Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ. Res. 36:328–351, 1975.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Linear kinetics. Am. J. Physiol. 264:H2007–H2028, 1993a.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A., G. G. Bach, and A. J. Schwab. Distributed-in-space product formation in vivo: Enzymic kinetics. Am. J. Physiol. 264:H2029–H2050, 1993b.

    PubMed  CAS  Google Scholar 

  • Jacquez, J. A. Compartmental Analysis in Biology and Medicine, 3rd Edition. Ann Arbor, MI: BioMedware, 1996.

    Google Scholar 

  • Pang, K. S., F. Barker, A. Simard, A. J. Schwab, and C. A. Goresky. Sulfation of acetaminophen by the perfused rat liver: The effect of red blood cell carriage. Hepatology 22:267–282, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ratna, S., M. Chiba, L. Bandyopadhyay, and K. S. Pang. Futile cycling between 4-meth-ylumbelliferone and its conjugates in perfused rat liver. Hepatology 17:838–853, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Salcudean, S. E., P. Bélanger, C. A. Goresky, and C. P. Rose. The use of Laguerre functions for parameter identification in a distributed biological system. IEEE Transact. Biomed. Eng. 28:767–775, 1981.

    Article  CAS  Google Scholar 

  • Sangren, W. C. and C. W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Mathem. Biophys. 15:387–394, 1953.

    Article  CAS  Google Scholar 

  • Schwab, A. J. Extension of the theory of the multiple indicator dilution technique to metabolic systems with an arbitrary number of rate constants. Math. Biosc. 71:57–79, 1984.

    Article  CAS  Google Scholar 

  • Schwab, A. J., F. M. Zwiebel, A. Bracht, and R. Scholz. Transport and metabolism of L-lactate in perfused rat liver studied by multiple pulse labelling. In: Carrier-mediated transport from blood to tissue, edited by D. M. Yudilevich and G. E. Mann, London: Longman, pp. 339–344, 1985.

    Google Scholar 

  • Schwab, A. J., A. Bracht, and R. Scholz. Investigation of rapid metabolic reactions in whole organs by multiple pulse labelling. In: Mathematics in biology and medicine, edited by V. Capasso, E. Grosso, and S. L. Paveri-Fontana (Lecture Notes in Biomathematics 57), Berlin; New York: Springer-Verlag, pp. 348–353, 1985.

    Google Scholar 

  • Schwab, A. J., A. Bracht, and R. Scholz. Transport of D-lactate in perfused rat liver. Eur. J. Biochem. 102:537–547, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, M. and M. S. Roberts. Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: Application of a stochastic model to the rat hindlimb. J. Pharmacokin. Biopharm. 24:173–196, 1996.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schwab, A.J. (1998). A Generalized Mathematical Theory of the Multiple-Indicator Dilution Method. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics