Skip to main content

Modeling in the Analysis of the Processes of Uptake and Metabolism in the Whole Organ

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

In the whole organ approach to cellular metabolism, the processes of capillary permeation, cellular entry, and intracellular reaction kinetics need to be examined in detail. The area is complex and varies from organ to organ, but there is a set of principles unifying the approaches to studies of these processes. The general approach to endogenous metabolism has been to carry out tracer studies within a variety of concentration steady states, and, for xenobiotics, to study the disposition of tracer within a variety of developed and maintained steady-state bulk concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassingthwaighte, J. B. Blood flow and diffusion through mammalian organs. Science 167:1347–1353, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., and D. A. Beard. Fractal 15O-water washout from the heart. Circ. Res. 77:1212–1221, 1995.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology. Sect. 2, The Cardiovascular System. Vol IV, The Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiological Society, pp. 549–626, 1984.

    Google Scholar 

  • Bassingthwaighte, J. B., F. H. Ackerman, and E. H. Wood. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415, 1966.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., W. A. Dobbs, and T. Yipintsoi. Heterogeneity of myocardial blood flow. In: Myocardial Blood Flow in Man: Methods and Significance in Coronary Disease, edited by A. Maseri. Torino, Italy: Minerva Medica, 1972, pp, 197–205.

    Google Scholar 

  • Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7:229–249, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., F. P. Chinard, C. Crone, C. A. Goresky, N. A. Lassen, R. S. Reneman, and K. L. Zierler. Terminology for mass transport and exchange. Am. J. Physiol. 250 (Heart Cire. Physiol. 19):H539–H545, 1986.

    Google Scholar 

  • Bassingthwaighte, J. B., R. B. King, and S. A. Roger. Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989a.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Blood-tissue exchange via transport and transformation by endothelial cells. Circ. Res. 65:997–1020, 1989b.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., M. A. Malone, T. C. Moffett, R. B. King, I. S. Chan, J. M. Link, and K. A. Krohn. Molecular and particulate depositions for regional myocardial flows in sheep. Circ. Res. 66:1328–1344, 1990.

    PubMed  CAS  Google Scholar 

  • Bohr, C. Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22:221–280, 1909.

    Google Scholar 

  • Bridge, J. H. B., M. M. Bersohn, F. Gonzalez, and J. B. Bassingthwaighte. Synthesis and use of radiocobaltic EDTA as an extracellular marker in rabbit heart. Am. J. Physiol. 242 (Heart Circ. Physiol. 11 ):H671–H676, 1982.

    PubMed  CAS  Google Scholar 

  • Buckberg, G. D., J. C. Luck, B. D. Payne, J. I. E. Hoffman, J. P. Archie, and D. E. Fixier. Some sources of error in measuring regional blood flow with radioactive microspheres. J. Appl. Physiol. 31:598–604, 1971.

    PubMed  CAS  Google Scholar 

  • Bukowski, T., T. C. Moffett, J. H. Revkin, J. D. Ploger, and J. B. Bassingthwaighte. Triplelabel β liquid scintillation counting. Anal. Biochem. 204:171–180, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Chinard, F. P., G. J. Vosburgh, and T. Enns. Transcapillary exchange of water and of other substances in certain organs of the dog. Am. J. Physiol. 183:221–234, 1955.

    PubMed  CAS  Google Scholar 

  • Crone, C. The permeability of capillaries in various organs as determined by the use of the “indicator diffusion” method. Acta Physiol. Scand. 58:292–305, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Deussen, A., and J. B. Bassingthwaighte. Modeling [15O]oxygen tracer data for estimating oxygen consumption. Am. J. Physiol. 270 (Heart Circ. Physiol. 39):H1115–H1130, 1996.

    Google Scholar 

  • Dible, J. H. Is fatty degeneration of the heart muscle a phanerosis? J. Pathol. Bacteriol. 39:197–207, 1934.

    Article  CAS  Google Scholar 

  • Diem, K. Documenta Geigy. Scientific Tables. Ardsley, NY: Geigy Pharmaceuticals, 1962.

    Google Scholar 

  • Glenny, R., H. T. Robertson, S. Yamashiro, and J. B. Bassingthwaighte. Applications of fractal analysis to physiology. J. Appl. Physiol. 70:2351–2367, 1991.

    PubMed  CAS  Google Scholar 

  • Gonzalez, F., and J. B. Bassingthwaighte. Heterogeneities in regional volumes of distribution and flows in the rabbit heart. Am. J. Physiol. 258 (Heart Circ. Physiol. 27):H1012–H1024, 1990.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez, J. M. Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10:409–428, 1962.

    PubMed  CAS  Google Scholar 

  • Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204:626–640, 1963.

    PubMed  CAS  Google Scholar 

  • Gorman, M. W., J. B. Bassingthwaighte, R. A. Olsson, and H. V. Sparks. Endothelial cell uptake of adenosine in canine skeletal muscle. Am. J. Physiol. 250 (Heart Circ. Physiol. 19):H482–H489, 1986.

    Google Scholar 

  • Grant, P. E., and C. J. Lumsden. Fractal analysis of renal cortical perfusion. Invest. Radiol. 29:16–23, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, W. F., J. W. Moore, J. M. Kinsman, and R. G. Spurling. Studies on the circulation. IV. Further analysis of the injection method, and of changes in hemodynamics under physiological and pathological conditions. Am. J. Physiol. 99:534–551, 1932.

    CAS  Google Scholar 

  • Harris, T. R., G. R. Bernard, K. L. Brigham, S. B. Higgins, J. E. Rinaldo, H. S. Borovetz, W. J. Sibbald, K. Kariman, and C. L. Sprung. Lung microvascular transport properties measured by multiple indicator dilution methods in patients with adult respiratory distress syndrome. A comparison between patients reversing respiratory failure and those failing to reverse. Am. Rev. Respir. Dis. 141:272–280, 1990.

    PubMed  CAS  Google Scholar 

  • King, R. B. Modeling membrane transport. Advances in Food and Nutrition Research 40:243–262, 1996.

    Article  PubMed  CAS  Google Scholar 

  • King, R. B., J. B. Bassingthwaighte, J. R. S. Hales, and L. B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.

    PubMed  CAS  Google Scholar 

  • Kroll, K., D. J. Kinzie, and L. A. Gustafson. Open system kinetics of myocardial phosphoenergetics during coronary underperfusion. Am. J. Physiol. 272 (Heart Circ. Physiol. 41): H2563–H2576, 1997.

    PubMed  CAS  Google Scholar 

  • Kuikka, J., M. Levin, and J. B. Bassingthwaighte. Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250 (Heart Circ. Physiol. 19):H29–H42, 1986.

    Google Scholar 

  • Malcorps, C. M., C. A. Dawson, J. H. Linehan, T. A. Bronikowski, D. A. Rickaby, A. G. Herman, and J. A. Will. Lung serotonin uptake kinetics from indicator-dilution and constant-infusion methods. J. Appl. Physiol. 57:720–730, 1984.

    PubMed  CAS  Google Scholar 

  • Meier, P., and K. L. Zierler. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744, 1954.

    PubMed  CAS  Google Scholar 

  • Polimeni, P. I. Extracellular space and ionic distribution in rat ventricle. Am. J. Physiol. 227:676–683, 1974.

    PubMed  CAS  Google Scholar 

  • Renkin, E. M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1205–1210, 1959a.

    PubMed  CAS  Google Scholar 

  • Renkin, E. M. Exchangeability of tissue potassium in skeletal muscle. Am. J. Physiol. 197:1211–1215, 1959b.

    PubMed  CAS  Google Scholar 

  • Rickaby, D. A., J. H. Linehan, T. A. Bronikowski, and C. A. Dawson. Kinetics of serotonin uptake in the dog lung. J. Appl. Physiol. 51 (Respirat. Environ. Exercise Physiol. 2):405–414, 1981.

    Google Scholar 

  • Schwartz, L. M., T. M. Bukowski, J. H. Revkin, and J. B. Bassingthwaighte. Capillary transport and metabolism of adenosine and inosine in rabbit and guinea pig hearts (unpublished data).

    Google Scholar 

  • Sokoloff, L., M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Yipintsoi, T., R. Tancredi, D. Richmond, and J. B. Bassingthwaighte. Myocardial extractions of sucrose, glucose, and potassium. In: Capillary Permeability (Alfred Benzon Symp. II), edited by C. Crone and N. A. Lassen. Copenhagen: Munksgaard, 1970, pp. 153–156.

    Google Scholar 

  • Yipintsoi, T., P. D. Scanlon, and J. B. Bassingthwaighte. Density and water content of dog ventricular myocardium. Proc. Soc. Exp. Biol. Med. 141:1032–1035, 1972.

    PubMed  CAS  Google Scholar 

  • Yipintsoi, T., W. A. Dobbs, Jr., P. D. Scanlon, T. J. Knopp, and J. B. Bassingthwaighte. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ. Res. 33:573–587, 1973.

    PubMed  CAS  Google Scholar 

  • Zierler, K. L. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res. 10:393–407, 1962.

    Google Scholar 

  • Zierler, K. L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16:309–321, 1965.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bassingthwaighte, J.B., Goresky, C.A., Linehan, J.H. (1998). Modeling in the Analysis of the Processes of Uptake and Metabolism in the Whole Organ. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics