Skip to main content

Improving the Catabolic Functions of Desiccation-Tolerant Soil Bacteria

  • Chapter
Twentieth Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

Bacterial strains were selected from a desiccated polluted soil for their drought tolerance and their ability to grow on diesel oil in view of incorporating them in a bioaugmentation product. These products are useful in case of recalcitrant xenobiotic pollution, where there is no intrinsic biodegradation activity in the soil. These strains grow on the easily degradable components of diesel oil. Introduction of new catabolic genes into these desiccation-tolerant bacteria in order to improve their catabolic functions was considered.

Plasmid-borne catabolic genes coding for enzymes involved in the degradation of more recalcitrant compounds (Isopropylbenzene, trichloroethene, 3-chlorobenzoate, 4-chlorobiphenyl, biphenyl) were successfully introduced in some of the desiccation-tolerant strains by means of natural conjugation. Strains exhibiting good tolerance to desiccation and able to grow on the new carbon sources were obtained. The frequencies of integration of the plasmids ranged from 2 x 10-8 to 9.2 10-2 transconjugants/acceptor.

Drought-tolerance is indeed important for bioaugmentation because of its intrinsic ecological significance and because a bioaugmentation starter has to be conditioned in a desiccated form to ensure good shelf-life. The conservation of the properties during storage was evaluated by accelerated storage tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Glass, D., Risto, T., and Van, Eijk J. (1995), Gen. Engineer. News 15(19), 6–9.

    Google Scholar 

  2. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart Ph. (1998), Appl. Biochem. Biotech. 70-72, 311–322.

    Article  CAS  Google Scholar 

  3. Venosa, A. D., Haines, J. R., Nisamaneepong, W., Govind, R., Prahan, R., and Siddique B. (1992), J. Ind. Microbiol. 10, 13–23.

    Article  CAS  Google Scholar 

  4. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1996), Med. Fac. Landbouww. Univ. Gent 61/4b, 2161–2164.

    Google Scholar 

  5. Marconi, A., Kieboom, J., and de Bont, J. (1997), Biotechnol. Lett. 19, 603–606.

    Article  CAS  Google Scholar 

  6. Ramos, J., Duque, E., Huertas, M.-J., and Haidour, A. (1995), J. Bacteriol. 177(14), 3911–3916.

    CAS  Google Scholar 

  7. Sträube, G., Hensel, C, Niedan, C, and Sträube, E. (1990), Anthonie Van Leeuwenhoek J. Microbiol. 57, 29–32.

    Article  Google Scholar 

  8. Ferguson, J. and Körte, F. (1981), Appl. Environ. Microbiol. 24, 7–15.

    Google Scholar 

  9. Behki, R., Top, E., Dick, W., and Germon, P. (1993), Appl. Environ. Microbiol. 59, 1955–1959.

    CAS  Google Scholar 

  10. Kobayashi, M., Nagasawa, T., and Yamadla, H. (1992), Trends BioTechnol. 10, 402–408.

    Article  CAS  Google Scholar 

  11. Sallis, P., Armfield, S., Bull, A., and Hardman, T. (1990), J. Gen. Microbiol. 136, 115–120.

    Article  CAS  Google Scholar 

  12. Zyltra, G. and Gibson, D. (1991), in Genetic Engineering, vol. 13., Setler, J. K., ed., Plenum Press, NY, pp. 183–203.

    Chapter  Google Scholar 

  13. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1997), in Proceedings of the “Workshop on Extremophiles,” Dec. 7-9, 1997, Mol Belgium.

    Google Scholar 

  14. Mattimore, V. and Battista, J. R. (1996), J. Bacteriol. 178, 633–637.

    CAS  Google Scholar 

  15. Lang, E. and Malik, K. (1996), Biodegradation 7, 65–71.

    Article  CAS  Google Scholar 

  16. Sakane, T., Banno, I., and Iijima, T. (1983), IFO Res. Comm. 11, 14–24.

    Google Scholar 

  17. Simione, F. (1992), J. Parent. Sci. Technol. 46, 226–232.

    Google Scholar 

  18. De Valdez, G. and Diekman, H. (1993), Biology 30, 185–190.

    Google Scholar 

  19. Grieff, D. and Rightsel, W. (1965), J. Immunol. 98, 895–900.

    Google Scholar 

  20. Dabrock, B., Kesseler, M., Averhoff, B., and Gottschalk G. (1994), Appl. Environ. Microbiol. 60(3), 853–860.

    CAS  Google Scholar 

  21. Springrel, D., Kreps, S., and Merglay, M. (1993), J. Bacteriol. 175, 1674–1681.

    Google Scholar 

  22. Figursky, D., Polhman, R., Bechhofer, D., Prince, A., and Kelton, C. (1982), Proc. Natl. Acad. Sci. USA 79, 1935–1939.

    Article  Google Scholar 

  23. Dawn, N. and Guuralus, C. (1973), J. Bacteriol. 114, 974–979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Weekers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weekers, F., Jacques, P., Springael, D., Mergeay, M., Diels, L., Thonart, P. (1999). Improving the Catabolic Functions of Desiccation-Tolerant Soil Bacteria. In: Davison, B.H., Finkelstein, M. (eds) Twentieth Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1604-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1604-9_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7214-4

  • Online ISBN: 978-1-4612-1604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics