Skip to main content

Cellular Interactions that Regulate Programmed Cell Death in the Developing Vertebrate Nervous System

  • Chapter
Cell Death and Diseases of the Nervous System

Abstract

The development of individual neurons and the nervous system as a whole are characterized by progressive cellular events involving the gradual attainment of various phenotypes, connectives, and functions. In this context, it is somewhat paradoxical that one of the most fundamental features of the developing nervous system is the widespread death of large numbers of neurons. Characterizing both the cell-cell interactions and molecular mechanisms that regulate neuronal survival during developmental cell death is currently at the forefront of research in developmental neurobiology. First, understanding how neuronal death, like other developmental cellular events such as proliferation, migration, and axon growth confer structure and function to the developing nervous system will provide a deeper understanding of neural and behavioral development in general. Second, vigorously pursuing the cellular interactions and molecular mechanisms that regulate developmental neuronal death may ultimately result in therapeutic strategies for attenuating pathological neuronal death induced by aging, injury, or disease. In fact, such therapeutic approaches have already begun thanks, in part, to several decades of basic research on the role of target-derived signals in regulating the extent of cell death during development. Several putative target-derived neurotrophic factors such as nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF), which rescue neurons from developmental death, are also remarkably successful at preventing neuronal death in animal models of injury and neurodegenerative disease (e.g., refs. 1 and 2). These neurotrophic factors, characterized originally within the framework of basic cell biological research, now for the first time offer the hope of slowing or arresting neuronal death induced by injury, disease, or aging in humans (see chapter by Koliatsos and Mocchetti for a topical discussion of trophic factors).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gash DM, Zhang Z, Ovadia A, Cass W, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996, 380: 252–255.

    Article  PubMed  CAS  Google Scholar 

  2. Sendtner M, Schmalbruch H, Stockli KA, Carroll P, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons in mouse mutant progressive motor neuropathy. Nature 1992, 358: 502–504.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis in alzheimer’s disease: colocalization with c-jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 1996, 16: 1710–1719.

    PubMed  CAS  Google Scholar 

  4. Garcia-Valenzuela E, Gorczyca W, Darzynkiewicz Z, Sharma SC. Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994, 25: 431–438.

    Article  PubMed  CAS  Google Scholar 

  5. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995, 15: 1001–1011.

    PubMed  CAS  Google Scholar 

  6. Portera-Cailliau C, Hedreen JC, Price D, Koliatsos VE. Evidence for apoptotic cell death in huntington disease and excitotoxic animal models. J Neurosci 1995, 15: 3775–3787.

    PubMed  CAS  Google Scholar 

  7. Yarmolinsky MB. Programmed cell death in bacterial populations. Science 1995, 267: 836–837.

    Article  PubMed  CAS  Google Scholar 

  8. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991, 14: 453–501.

    Article  PubMed  CAS  Google Scholar 

  9. Herrup K, Sunter K. Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras. J Neurosci 1987, 7: 829–836.

    PubMed  CAS  Google Scholar 

  10. Tanaka H, Landmesser L. Cell death of lumbosacral motoneurons in chick, quail, and chick-quail chimera embryos: a test of the quantitative matching hypothesis of neuronal cell death. J Neurosci 1986, 6: 2889–2899.

    PubMed  CAS  Google Scholar 

  11. Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, Thoenen H. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 1987, 326: 353–358.

    Article  PubMed  CAS  Google Scholar 

  12. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M. Severe sensory and sympathetic neuropathy in mice carrying a disrupted trk/NGF receptor gene. Nature 1994, 368: 246–249.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson EM, Gorin PM, Brandeis LD, Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science 1980, 210: 916–918.

    Article  PubMed  CAS  Google Scholar 

  14. Levi-Montalcini L. The nerve growth factor 35 years later. Science 1987, 237: 1154.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson EM. Destruction of the sympathetic nervous system in neonatal rats and hamsters by vinblastine: prevention by concomitant administration of nerve growth factor. Brain Res 1978, 141: 105–118.

    Article  PubMed  CAS  Google Scholar 

  16. Oppenheim RW, Maderdrut JL, Wells DJ. Cell death of motoneurons in the chick embryo spinal cord. VI. Reduction of naturally occurring cell death in the thoracolumbar column of terni by nerve growth factor. J Comp Neurol 1982, 210: 174–189.

    Article  PubMed  CAS  Google Scholar 

  17. Armstrong RC, Clarke PGH. Neuronal death and the development of the pontine nuclei and inferior olive in the chick. Neuroscience 1979, 4: 1635–1647.

    Article  PubMed  CAS  Google Scholar 

  18. McKay SE, Oppenheim RW. Lack of evidence of cell death among avian spinal interneurons during normal development and following removal of targets and afferents. J Neurosci 1991, 22: 721–733.

    CAS  Google Scholar 

  19. Clarke PGH. Neuronal death in development of the vertebrate central nervous system. Sem in the Neurosci 1994, 6: 291–297.

    Article  Google Scholar 

  20. Von Bartheld CS, Kinoshita Y, Prevette D, Yin QW, Oppenheim RW, Bothwell M. Positive and negative effects of neurotrophins on the isthmo-optic nucleus in chick embryos. Neuron 1994, 12: 639–654.

    Article  Google Scholar 

  21. Henderson CE, Camu W, Mettling C, Gouin A, Poulson K, Karihaloo M, Rullamas J, Evans T, McMahon SB, Armanini MP, Berkemeier L, Phillips HS, Rosenthal A. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 1993, 363: 266–270.

    Article  PubMed  CAS  Google Scholar 

  22. Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL. Evidence that brain-derived neurotrophic factor is a trophic factor for motoneurons. Neuron 1993, 10: 359–367.

    Article  PubMed  CAS  Google Scholar 

  23. Oppenheim RW, Yin Q-W, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 1992, 360: 755–757.

    Article  PubMed  CAS  Google Scholar 

  24. Yan Q, Elliott JL, Sun J, Matheson C, Zhang L, Mu X, Rex KL, Snider WD. Influences of neurotrophins on mammalian motoneurons in vivo. J Neurobiol 1993, 24: 1555–1577.

    Article  PubMed  CAS  Google Scholar 

  25. Oppenheim RW, Prevette D, Haverkamp LJ, Houenou L, Qin-Wei Y, McManaman J. Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. J Neurobiol 1993, 24: 1065–1079.

    Article  PubMed  CAS  Google Scholar 

  26. Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE, Vaught JL. Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 1993, 124: 73–88.

    Article  PubMed  CAS  Google Scholar 

  27. Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Qin-Wei Y, Oppenheim RW. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 1993, 24: 1578–1588.

    Article  PubMed  CAS  Google Scholar 

  28. Henderson CE, Phillips HS, Pollock RA, Davies AM, LeMeulle C, Armanini M, Simpson LC, Moffet B, Vandlen RA, Koliatsos VE, Rosenthal A. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994, 266: 970–972.

    Article  Google Scholar 

  29. Oppenheim RW, Houenou LJ, Johnson JE, Lin L, Linxi L, Lo AL, Newsome AL, Prevette DM, Wang SW. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995, 373: 344–346.

    Article  PubMed  CAS  Google Scholar 

  30. Cowan, O’Leary. 1984 Medicine, Science, and Society: Celebrating the Harvard Medical School Bicentennial. Wiley, New York.

    Google Scholar 

  31. Pittman RH, Oppenheim RW. Neuromuscular blockade increases motoneurone survival during normal cell death in the chick embryo. Nature 1978, 271: 364–366.

    Article  PubMed  CAS  Google Scholar 

  32. Cowan WM, Fawcett JW, O’Leary DM, Stanfield BB. Regressive events in neurogenesis. Science 225: 1258–1265.

    Google Scholar 

  33. Houenou LJ, McManaman JL, Prevette D, Oppenheim RW. Regulation of putative muscle-derived neurotrophic factors by muscle activity and innervation: in vivo and in vitro studies. J Neurosci 1991, 11: 2829–2837.

    PubMed  CAS  Google Scholar 

  34. Tanaka H. Chronic application of curare does not increase the level of motoneuron survival-promoting activity in limb muscle extracts during the naturally-occurring motoneuron cell death period. Dev Biol 1987, 124: 347–357.

    Article  PubMed  CAS  Google Scholar 

  35. Linden R. The survival of developing neurons: a review of afferent control. Neurosci 1994, 58: 671–682.

    Article  CAS  Google Scholar 

  36. Clarke PGH. Neuronal death during development in the isthmo-optic nucleus of the chick: sustaining role of afferents from the tectum. J Comp Neurol 1985, 234: 365–379.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke PGH. Neuron death in the developing avian isthmo-optic nucleus, and its relation to the establishment of functional circuitry. J Neurobiol 23: 1140–1158.

    Google Scholar 

  38. Furber S, Oppenheim RW, Prevette D. Naturally occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: evidence for the role of afferents in ganglion cell survival. J Neurosci 1987, 7: 1816–1832.

    PubMed  CAS  Google Scholar 

  39. Linden R, Pinon LGP. Dual control by targets and afferents of developmental neuronal death in the mammalian central nervous system: a study in the parabigeminal nucleus of the rat. J Comp Neurol 1987, 266: 141–149.

    Article  PubMed  CAS  Google Scholar 

  40. Okado N, Oppenheim RW. Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. J Neurosci 1984, 4: 1639–1652.

    PubMed  CAS  Google Scholar 

  41. Cunningham TJ, Huddleston C, Murray M. Modification of neuron numbers in the visual system of the rat. J Comp Neurol 1979, 184: 423–424.

    Article  PubMed  CAS  Google Scholar 

  42. Linden R, Renteria AS. Afferent control of neuron numbers in the developing brain. Dev Brain Res 1988, 44: 291–295.

    Article  CAS  Google Scholar 

  43. Sohal GS, Hirano S, Kumaresan K, Ali MM. Influence of altered afferent input on the number of trochlear motor neurons during development. J Neurobiol 1992, 23: 10–16.

    Article  PubMed  CAS  Google Scholar 

  44. Galli-Resta L, Ensini M, Fusco E, Gravina A, Margheritti B. Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat. J Neurosci 1993, 13: 243–250.

    PubMed  CAS  Google Scholar 

  45. Catsicas M, Pequignot Y, Clarke PGH. Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J Neurosci 1992, 12: 4642–4660.

    PubMed  CAS  Google Scholar 

  46. Yin Q-W, Johnson J, Prevette D, Oppenheim RW. Cell death of spinal motoneurons in the chick embryo following deafferentation: rescue effects of tissue extracts, soluble proteins, and neurotrophic agents. J Neurosci 1994, 14: 7629–7640.

    PubMed  CAS  Google Scholar 

  47. Maderdrut JL, Oppenheim RW, Prevette D. Enhancement of naturally occurring cell death in the sympathetic and parasympathetic ganglia of the chicken embryo following blockade of ganglionic transmission. Brain Res 1988, 444: 189–194.

    Article  PubMed  CAS  Google Scholar 

  48. Rubel EW, Hyson RL, Durham D. Afferent regulation of neurons in the brain stem auditory system. J Neurobiol 1990, 21: 169–196.

    Article  PubMed  CAS  Google Scholar 

  49. Franklin JL, Johnson EM. Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci 1992, 15: 501–508.

    Article  PubMed  CAS  Google Scholar 

  50. Lipton SA. Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture. Proc Natl Acad Sci USA 1986, 83: 9774–9778.

    Article  PubMed  CAS  Google Scholar 

  51. Johnson EM, Koike T, Franklin J. A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol 1992, 115: 163–166.

    Article  PubMed  Google Scholar 

  52. Lu B, Yokoyama M, Dreyfus CF, Black IB. Depolarizing stimuli regulate nerve growth factor gene expression in cultured hippocampal neurons. Proc Natl Acad Sci 1991, 88: 6289–6292.

    Article  PubMed  CAS  Google Scholar 

  53. Korsching S. The neurotrophic factor concept: a re-examination. J Neurosci 1993, 13: 2739–2748.

    PubMed  CAS  Google Scholar 

  54. Johnson EM, Deckwerth TL. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993, 16: 31–46.

    Article  PubMed  CAS  Google Scholar 

  55. Von Bartheld CS, Byers MR, Williams R, Bothwell M. Anterograde transport of neurotrophins and axodendritic transfer in the developing visual system. Nature 1996, 387: 830–833.

    Article  Google Scholar 

  56. Kaiser J, Lipton SA. VIP-mediated increase in cA MP prevents TTX-induced retinal ganglion cell death in vitro. Neuron 1990, 5: 373–381.

    Article  PubMed  CAS  Google Scholar 

  57. Hyson RL, Rubel EW. Transneuronal regulation of protein synthesis in the brain stem auditory system of the chick requires synaptic activation. J Neurosci 1989, 9: 2835–2845.

    PubMed  CAS  Google Scholar 

  58. Born DE, Rubel EW. Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 1988, 8: 901–919.

    PubMed  CAS  Google Scholar 

  59. Catsicas M, Pequignot Y, Clarke PGH. Rapid onset of neuronal death induced by blockade of ether axoplasmic transport or action potentials in afferent bibers during brain development. 1992, J Neurosci 12: 4642–4660.

    PubMed  CAS  Google Scholar 

  60. Lahica EA, Rubsamen R, Zirpel L, Rubel EW. Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. J Neurosci 1995, 15: 1724–1734.

    Google Scholar 

  61. Zirpel L, Lahica EA, Lippe WR. Deafferentation increases the intracellular calcium of cochlear nucleus neurons in the embryonic chick. J Neurophysiol 1996, 74: 1355–1357.

    Google Scholar 

  62. Hyde GE, Lahica EA, Rubel EW. Afferent influences on avian brainstem auditory system: flunarizine blocks calcium accumulation, mitochondrial biogenesis, and cell death following cochlea removal. J Comp Neurol (in press).

    Google Scholar 

  63. Eagleson KL, Raju TR, Bennett MR. Motoneuron survival is induced by immature astro-cytes developing avian spinal cord. Dev Brain Res 1985, 17: 95–104.

    Article  Google Scholar 

  64. Engele J, Bohn MC. The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 1991, 11: 3070–3078.

    PubMed  CAS  Google Scholar 

  65. Lindsay RM. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons. Nature 1979, 282: 80–82.

    Article  PubMed  CAS  Google Scholar 

  66. Verdi JM, Groves AK, Farinas I, Jones K, Marchionni MA, Reichardt LF, Anderson DJ. A reciprocal cell-cell interaction mediated by NT-3 and neuregulins controls the early survival and development of sympathetic neuroblasts. Neuron 1996, 16: 515–527.

    Article  PubMed  CAS  Google Scholar 

  67. Nordeen EJ, Nordeen KW. Sex difference among non-neuronal cells precedes sexually dimorphic neuron growth and survival in an avian song control nucleus. J Neurobiol 1996 (in press).

    Google Scholar 

  68. Boudreau N, Sympson CJ, Werb Z, Bissell MJ. Suppression of ICE and apoptosis in mammary epithelial cell by extracellular matrix. Science 1995, 267: 891–893.

    Article  PubMed  CAS  Google Scholar 

  69. Kollros JJ. Transitions in the nervous system during amphibian metamorphosis, in Metamorphosis: A Problem in Developmental Biology (Gilbert LI, Frieden E, eds.), New York, Plenum, pp. 445–459.

    Google Scholar 

  70. Truman JW, Thorn RS, Robinow S. Programmed neuronal death in insect development. J Neurobiol 1992, 23: 1295–1311.

    Article  PubMed  CAS  Google Scholar 

  71. Wright LL, Smolen AJ. The role of neuron death in the development of the gender difference in the number of neurons in the rat superior cervical ganglion. Int J Dev Neurosci 5: 305–311.

    Google Scholar 

  72. Wimer RE, Wimer CC. On the development of strain and sex differences in granule cell number in the area dentata of house mice. Dev Brain Res 1988, 42: 191–197.

    Article  Google Scholar 

  73. Nordeen EJ, Nordeen KW, Sengelaub D.R, Arnold A.P. Androgens prevent normally occurring cell death in a sexually dimorphic spinal nucleus. Science 1985, 229: 671–673

    Article  PubMed  CAS  Google Scholar 

  74. Gould E, McEwen BS. Neuronal birth and death. Curr Opin Neurobiol 1993, 3: 676–682.

    Article  PubMed  CAS  Google Scholar 

  75. Sloviter RS, Dean E, Neubort S. Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol 1993, 330: 337–351.

    Article  PubMed  CAS  Google Scholar 

  76. Davies AM, Wright EM. Neurotrophin autocrine loops. Curr Biol 1995, 5: 723–726.

    Article  PubMed  CAS  Google Scholar 

  77. Miranda RC, Sohrabji F, Toran-Allerand CD. Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc Natl Acad Sci 1993, 90: 6439–6443.

    Article  PubMed  CAS  Google Scholar 

  78. Wright EM, Vogel KS, Davies AM. Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron 1992, 9: 139–150.

    Article  PubMed  CAS  Google Scholar 

  79. Schecterson LC, Bothwell M. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 1992, 9: 449–463.

    Article  PubMed  CAS  Google Scholar 

  80. Acheson A, Conover JC, Fandl JP, DeChaiara TM, Rusell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374: 450–453.

    Article  PubMed  CAS  Google Scholar 

  81. Davies AM. Intrinsic programmes of growth and survival in developing vertebrate neurons. Trends Neurosci 1994, 17: 195–199.

    Article  PubMed  CAS  Google Scholar 

  82. Vogel KS, Davies AM. The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 1991, 7: 819–830.

    Article  PubMed  CAS  Google Scholar 

  83. Blaschke AJ, Staley K, Chun J. Widespread programmed cell death in proliferative and post-mitotic regions of the fetal cerebral cortex. Development 1996, 112: 1165–1174.

    Google Scholar 

  84. Carr VM, Simpson SB. Rapid appearance of labelled degenerating cells in the dorsal root ganglia after exposure of chick embryos to tritiated thymidine. Dev Brain Res 1982, 2: 157–62.

    Article  Google Scholar 

  85. Homma S, Yaginuma H, Oppenheim RW. Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early pheno-typic selection. J Comp Neurol 1994, 345: 377–395.

    Article  PubMed  CAS  Google Scholar 

  86. Yaginuma H, Tomita M, Takashita N, McKay SE, Cardwell C, Yin QW, Oppenheim RW. A novel type of programmed neuronal death in the cervical spinal cord of the chick embryo. J Neurosci 1996, 16: 3685–3703.

    PubMed  CAS  Google Scholar 

  87. Barde YA, Edgar D, Thoenen H. Sensory neurons in culture: changing requirements for survival factors during embryonic development. Proc Natl Acad Sci USA 1980, 77: 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  88. Buchman VL, Davies AM. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 1993, 118: 989–1001.

    PubMed  CAS  Google Scholar 

  89. Breedlove SM. Sexual dimorphism in the vertebrate nervous system. J Neurosci 1992, 12: 4133–4142.

    PubMed  CAS  Google Scholar 

  90. Lindholm D, Castren E, Hengerer B, Zafra B, Berninger B, Thoenen H. Differential regulation of nerve growth factor (NGF) synthesis in neurons and astrocytes by glucocorticoid hormones. Eur J Neurosci 1992, 4: 404–410.

    Article  PubMed  Google Scholar 

  91. Lindholm D, Castren E, Berzaghi M, Blochl A, Thoenen H. Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain: implications for neuronal plasticity. J Neurobiol 1994, 25: 1362–1372.

    Article  PubMed  CAS  Google Scholar 

  92. Sohrabji F, Miranda RC, Toran-Allerand CD. Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. J Neurosci 1994, 14: 459–471.

    PubMed  CAS  Google Scholar 

  93. Forger NG, Roberts S, Wong V, Breedlove SM. Ciliary neurotrophic factor maintains motoneurons and their target muscles in developing rats. J Neurosci 1993, 13: 4720–4726.

    PubMed  CAS  Google Scholar 

  94. Oppenheim RW, Haverkamp LJ, Prevette D, McManaman JL, Appel SH. Reduction of naturally occurring motoneuron death in vivo by a target-derived neurotrophic factor. Science 1988, 240: 919–922.

    Article  PubMed  CAS  Google Scholar 

  95. Wetts R, Herrup K. Direct correlation between Purkinje and granule cell number in the cerebellum of lurcher chimeras and wild-type mice. Dev Brain Res 1983, 10: 41–47.

    Article  Google Scholar 

  96. Kutch W, Bentley D. Programmed death of pioneer neurons in the grasshopper embryo. Dev Biol 1987, 123: 517–525.

    Article  Google Scholar 

  97. McConnell SK, Ghosh A, Shatz CJ. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 1989, 245: 978–982.

    Article  PubMed  CAS  Google Scholar 

  98. Lushkin MB, Shatz CJ. Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 1985a, 5: 1062–1075.

    Google Scholar 

  99. Lushkin MB, Shatz CJ. Neurogenesis of the cat’s primary visual cortex. J Comp Neurol 1985b, 242: 611–631.

    Article  Google Scholar 

  100. Chalupa LM, Dreher B. High precision systems require high precision blueprints: a new view regarding the formation of connections in the mammalian visual system. J Cognit Neurosci 1991, 3: 209–

    Article  Google Scholar 

  101. O’Leary DDM, Fawcett JW, Cowan WM. Topographic targeting errors in the retino-collicular projections and their elimination by selective ganglion cell death. J Neurosci 1986, 6: 3692–3705.

    PubMed  Google Scholar 

  102. Catsicas S, Thanos S, Clarke PGH. Major role for neuronal death during brain development refinement of topographical connections. Proc Natl Acad Sci 1987, 84: 8165–8168.

    Article  PubMed  CAS  Google Scholar 

  103. Landmesser L, O’Donovan MJ. The activation patterns of embryonic chick motoneurons projecting to inappropriate muscles. J Physiol 1984, 347: 189–204.

    PubMed  CAS  Google Scholar 

  104. Avery L, Horvitz HR. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 1987, 51: 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  105. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986, 44: 817–829.

    Article  PubMed  CAS  Google Scholar 

  106. Forss-Petter S, Danileson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, Sutcliffe JG. Transgenic mice expressing b-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990, 5: 187–197.

    Article  PubMed  CAS  Google Scholar 

  107. Sadoul R, Catsicas S, Martinou J-C. Neuronal death: common mechanisms during development and disease. Sem in the Neurosci 1994, 6: 343–346.

    Article  CAS  Google Scholar 

  108. Veis DJ, Sorenson CM, Shutter JR, Korsemeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993, 75: 229–240.

    Article  PubMed  CAS  Google Scholar 

  109. Sagot Y, Dubois-Dauphin M, Tan SA, de Bilbao F, Aebischer P, Martinou J-C, Kato AC. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 1995, 15: 7727–7733.

    PubMed  CAS  Google Scholar 

  110. Horsburgh GM, Sefton AJ. Cellular degeneration and synaptogenesis in the developing retina of the rat. J Comp Neurol 1987, 263: 553–566.

    Article  PubMed  CAS  Google Scholar 

  111. Carr VM, Farbman AI. The dynamics of cell death in the olfactory epithelium. Exp Neurol 1993, 124: 308–314

    Article  PubMed  CAS  Google Scholar 

  112. Jackson KR, Duncan ID. Cell kinetics and cell death in the optic nerve of myelin deficient rat. J Neurocytol 1988, 17: 657–670.

    Article  PubMed  CAS  Google Scholar 

  113. Knapp PE, Skoff RP, Redstone DW. Oligodendroglial cell death in jimpy mice: an explanation for the myelin deficit. J Neurosci 1986, 6: 2813–2822.

    PubMed  CAS  Google Scholar 

  114. Barres BA, Raff MC. Control of oligodendrocyte number in the developing rat optic nerve. Neuron, 1994, 12: 935–942.

    Article  PubMed  CAS  Google Scholar 

  115. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992, 70: 31–

    Article  PubMed  CAS  Google Scholar 

  116. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC. Cell death in the oligodendrocyte lineage. J Neurobiol 1992, 23: 1221–1230.

    Article  PubMed  CAS  Google Scholar 

  117. Ciutat D, Caldero J, Oppenheim RW, Esquerda JE. Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo. J Neurosci 1996, 16: 3979–3990.

    PubMed  CAS  Google Scholar 

  118. Burne JF, Staple JK, Raff MC. Glial cells are increased proportionately in transgenic optic nerves with increased numbers of axons. J Neurosci 1996, 16: 2064–2073.

    PubMed  CAS  Google Scholar 

  119. Jessen KR, Brennant A, Morgan L, Mirsky R, Kent A, Hasimoto Y, Cavrilovic J. The schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 1994, 12: 509–527.

    Article  PubMed  CAS  Google Scholar 

  120. Trachtenberg JT, Thompson WJ. Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 1996, 379: 174–177.

    Article  PubMed  CAS  Google Scholar 

  121. Barres BA, Scmid R, Sendtner M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 1993, 118: 283–295.

    PubMed  CAS  Google Scholar 

  122. Krueger BK, Burne JF, Raff MC. Evidence for large-scale astrocyte death in developing cerebellum. J Neurosci 1995, 15: 3366–3374.

    PubMed  CAS  Google Scholar 

  123. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Social controls on cell survival and cell death. Science 1993, 262: 695–700.

    Article  PubMed  CAS  Google Scholar 

  124. Calof AL, Hagiwara N, Holcomb JD, Mumm JS, Shou J. Neurogenesis and cell death in olfactory epithelium. J Neurobiol 1996, 30: 67–81.

    Article  PubMed  CAS  Google Scholar 

  125. Doupe A. Songbirds and adult neurogenesis: a new role for hormones. Proc Natl Acad Sci 1994, 91: 7836–7838.

    Article  PubMed  CAS  Google Scholar 

  126. Nordeen EJ, Nordeen KW. Hormonally-regulated neuron death in the avian brain. Semi in the Neurosci 1994, 6: 299–306

    Article  CAS  Google Scholar 

  127. Brown SD, Johnson F, Bottjer SW. Neurogenesis in adult canary telencephalon is independent of gonadal hormone levels. J Neurosci 1993, 13: 2032

    Google Scholar 

  128. Gould E, Cameron HE, Daniels DC, Woolley CS, McEwen BS. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992, 12: 3642–3650.

    PubMed  CAS  Google Scholar 

  129. Barnea A, Nottebohm F. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc Natl Acad Sci 1996, 93: 714–718.

    Article  PubMed  CAS  Google Scholar 

  130. Rasika S, Nottebohm F, Alvarez-Buylla A. Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc Natl Acad Sci 1994, 91: 7854–7858.

    Article  PubMed  CAS  Google Scholar 

  131. Galli-Resta L, Ensini M. An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer. J Neurosci 1996, 16: 2318–2324.

    PubMed  CAS  Google Scholar 

  132. Mettling C, Gouin A, Robinson M, M’Hamdi H, Camu W, Bloch-Gallego E, Buisson B, Tanaka H, Davies AM, Henderson CE. Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support. J Neurosci 1995, 15: 3128–3137.

    PubMed  CAS  Google Scholar 

  133. McKay SE, Herzog K-H, Garner A, Tucker R, Oppenheim RW, Large T. Expression of BDNF and trk B during the development of the neuromuscular system in the chick embryo. Development 1996, 122: 715–724.

    PubMed  CAS  Google Scholar 

  134. Larmet Y, Dolphin AC, Davies AM. Intracellular calcium regulates the survival of early sensory neurons before they become dependent on neurotrophic factors. Neuron 1992, 9: 563–574.

    Article  PubMed  CAS  Google Scholar 

  135. Eichler ME, Rich KM. Death of sensory ganglion neurons after acute withdrawal of nerve growth factor in dissociated cultures. Brain Res 1989, 482: 340–346.

    Article  PubMed  CAS  Google Scholar 

  136. Eichler ME, Dubinsky JM, Rich KM. Relationship of intracellular Ca2+ to dependence on nerve growth factor in DRG neurons in cell culture. J Neurochem 1992, 58: 263–269.

    Article  PubMed  CAS  Google Scholar 

  137. Koike T, Tanaka S. Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Ca2+. Proc Natl Acad Sci 1991, 88: 3892–3

    Article  PubMed  CAS  Google Scholar 

  138. Appel SH. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkin-sonism and Alzheimer’s disease. Ann Neurol 1981, 10: 499–501.

    Article  PubMed  CAS  Google Scholar 

  139. Snider WD, Elliott JL, Yan Q. Axotomy-induced neuronal death during development. J Neurobiol 1992, 23: 1231–1246.

    Article  PubMed  CAS  Google Scholar 

  140. Tong JX, Eichler ME, Rich KM. Intracellular calcium levels influence apoptosis in mature sensory neurons after trophic factor deprivation. Exp Neurol 1996, 138: 45–52.

    Article  PubMed  CAS  Google Scholar 

  141. Lohman C, Friauf E. Distribution of the calcium binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J Comp Neurol 1996, 367: 90–109.

    Article  Google Scholar 

  142. Choi DW. Calcium: still center stage in hypoxic-ischemic neuronal death. Trends Neurosci 18: 58–60

    Google Scholar 

  143. Greenlund LJS, Korsemeyer SJ, Johnson EM. Role of Bcl-2 in the survival and function of developing and mature sympathetic neurons. Neuron 1995, 15: 649–661.

    Article  PubMed  CAS  Google Scholar 

  144. Gonzalez-Garcia M, Garcia I, Ding L, O’Shea S, Boise LH, Thompson CB, Nunez G. Bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc Natl Acad Sci 1995, 92: 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  145. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374: 733–736.

    Google Scholar 

  146. Lindsay RM. Nerve growth factors (NGF, BDNF) enhance axonal regeneration, but are not required for survival of adult sensory neurons. J Neurosci 1988, 8: 2394–2405.

    PubMed  CAS  Google Scholar 

  147. Ernfors P, Henschen A, Olson L, Persson H. Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord moto-neurons. Neuron 1989, 2: 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  148. Liston P, Roy N, Katsuyuki T, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996, 379: 349–353.

    Article  PubMed  CAS  Google Scholar 

  149. Coyle JT, Puttfarcken P. Oxidative stress, glutamate and neurodegenerative disorders. Science 1993, 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  150. Jackson GR, Apffel L, Werrbach-Perez K, Perez-Polo JR. Role of nerve growth factor in oxidant-anti-oxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 1990, 25: 360–368.

    Article  PubMed  CAS  Google Scholar 

  151. Pan Z, Perez-Polo R. Role of nerve growth factor in oxidant homeostasis: glutathione metabolism. J Neurochem 1993, 61: 1713–1721.

    Article  PubMed  CAS  Google Scholar 

  152. Sampath D, Jackson GR, Werrbach-Perez K, Perez-Polo J.R. Effects of nerve growth factor on glutathione peroxidase and catalase in PC12 cells. J Neurochem 1994, 62: 2476–2479.

    Article  PubMed  CAS  Google Scholar 

  153. Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenyl-piridium ion toxicity: involvement of the glutathione system. J Neurochem 1992, 59: 99–106.

    Article  PubMed  CAS  Google Scholar 

  154. Hengartner MO. Life and death decisions: ced-9 and programmed cell death in Caenorhabditis elegans. Science 1995, 270: 931.

    Article  CAS  Google Scholar 

  155. Allsopp TE, Wyatt S, Patterson HF, Davies AM. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor dependent neurons from apoptosis. Cell 1993, 73: 295–307.

    Article  PubMed  CAS  Google Scholar 

  156. McCaffery CA, Raju TR, Bennett MR. Effects of cultured astroglia on the survival of neonatal rat retinal ganglion cells in vitro. Dev Biol 1984, 104: 441–448.

    Article  PubMed  CAS  Google Scholar 

  157. Dubois-Dauphin M, Frankowski H, Tsujimoto Y, Huarte J, Martinou JC. Neonatal motor neurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. ProcNatl Acad Sci 1994, 91: 3309–3313.

    Article  CAS  Google Scholar 

  158. Lawrence MS, Ho DY, Sun GH, Steinberg GK, Sapolsky RM. Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J Neurosci 1996, 16: 486–496.

    PubMed  CAS  Google Scholar 

  159. Martinou JC, Dubois-Dauphin M, Syaple JK, Rodriguez I, Frankowsky H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J. Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994, 13: 1–20.

    Article  Google Scholar 

  160. Hockenbery DM, Nunez G, Milliman C, Schreiber RD, Korsemeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990, 348: 334–336.

    Article  PubMed  CAS  Google Scholar 

  161. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993, 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  162. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1992, 262: 1274–1277.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burek, M.J., Oppenheim, R.W. (1999). Cellular Interactions that Regulate Programmed Cell Death in the Developing Vertebrate Nervous System. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics