Skip to main content

Bernstein Processes Associated with a Markov Process

  • Conference paper
Stochastic Analysis and Mathematical Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

A general description of Bernstein processes, a class of diffusion processes, relevant to the probabilistic counterpart of quantum theory known as Euclidean Quantum Mechanics, is given. It is compatible with finite or infinite dimensional state spaces and singular interactions. Although the relations with statistical physics concepts (Gibbs measure, entropy,…) is stressed here, recent developments requiring Feynman’s quantum mechanical tools (action functional, path integrals, Noether’s Theorem,…) are also mentioned and suggest new research directions, especially in the geometrical structure of our approach.

Partially supported by ICCTI-CONICYT exchange program and the Presidential Chair on Qualitative Analysis of Quantum Dynamical Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys. 27 (9) (1986), 2307.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Albeverio, K. Yasue, and J. C. Zambrini, Euclidean quantum mechanics: analytical approach, Ann. Inst. H. Poincaré (Phys. Théor.) 49 (3) (1989), 259.

    MathSciNet  Google Scholar 

  3. E. Schrödinger, Sur la théorie relativiste de l’électron et l’interpretation de la mécanique quantique, Ann. Inst. H. Poincaré 2 (1932), 269.

    Google Scholar 

  4. H. Föllmer, Random fields and diffusion processes, in École d’Eté de St. Flour XV-XVII (1985–87), edited by P. L. Hennequin, Springer Lecture Notes in Mathematics 1362, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  5. L. M. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, Journal of Funct. Anal. 123 (1994), p. 202.

    Article  MATH  Google Scholar 

  6. D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York, 1969.

    MATH  Google Scholar 

  7. B. Jamison, Reciprocal processes, Z. Wahrschernlichkeit V. Gebiete 30 (1974), p. 65.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. B. Cruzeiro and J. C. Zambrini, J. of Funct. Anal. 96 (1) (1991), p. 62.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Csiszär, I-divergence geometry of probability distributions and minimization problems, Ann. Probability 3(1) (1975), 146.

    Article  MathSciNet  Google Scholar 

  10. M. Nagasawa, Schrödinger Equation and Diffusion Theory, Monographs in Math. 86 Birkhäuser, Basel, 1993.

    Book  Google Scholar 

  11. M. Brunaud, Stoch. Proc. and Applic. 44 (1993), p. 329.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Cattiaux and Ch. Léonard, Minimization of Kullpack information for diffusion processes, Ann. Inst. H. Poincaré 30 (1) (1994), p. 83.

    MATH  Google Scholar 

  13. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  14. A. Beurling, An automorphism of product measures, Annals of Mathematics 72(1) (1960), p. 189.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Dellacherie and P. A. Meyer, Probabilités et Potentiel, vol. I, Hermann, Paris, 1975.

    Google Scholar 

  16. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  17. E. Nelson, Quantum Fluctuations, Princeton Series in Physics (Princeton Univ. Press, 1985).

    MATH  Google Scholar 

  18. G. Jona-Lasinio and P. K. Mitter, Comm. Math. Physics 101 (1985), p. 409.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. D. Donsker and S. R. S. Varadhan IV, Comm. Pure Appl. Math. 36 (1983), p. 183.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. M. Blumenthal and R. K. Getoor, Markov Processes and their Potential Theory, Academic Press, New York, 1968.

    Google Scholar 

  21. W. A. Zheng, Ann. Inst. H. Poincaré 21 (1985), p. 103.

    MATH  Google Scholar 

  22. T. Kolsrud, Quantum constants of motion and the heat Lie algebra in a Riemannian manifold, Preprint, KTH, Stockholm,1996.

    Google Scholar 

  23. K. Itô, The Brownian motion and tensor fields on Riemannian manifold, in Proc. of Intern. Congress of Math., Stockholm, 1962, p. 536.

    Google Scholar 

  24. D. Dohrn and F. Guerra, Geodesic correction to stochastic parallel displacement of tensors, in Springer Lect. Notes in Phys. 93, edited by G. Casati and J. Ford, Springer-Verlag, Berlin, 1979, p. 241.

    Google Scholar 

  25. P. Malliavin, Stochastic Analysis, Grundleh. der Math. Wissen. 313, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  26. W. H. Fleming and H. N. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  27. M. G. Crandall and P. Lions, Trans. Amer. Math. Soc. no. 277 (1984), p. 1.

    Article  MathSciNet  Google Scholar 

  28. J. C. Zambrini, Probability and quantum symmetries in a Riemannian manifold, in Progress in Probability Series, edited by R. Dalang, M. Dozzi and F. Russo, (1999).

    Google Scholar 

  29. P. J. Olver, Applications of Lie Groups to Differential Equations (New York: Springer-Verlag, 1986).

    Book  MATH  Google Scholar 

  30. M. Thieullen and J. C. Zambrini, Ann. Inst. H. Poincaré (Phys. Théor.) 67 (3) (1997), p. 297.

    MathSciNet  MATH  Google Scholar 

  31. M. Thieullen and J. C. Zambrini, Probability and quantum symmetries I. The theorem of Noether in Schrödinger’s Euclidean quantum mechanics, Prob. Theory and Related Fields 107 (1997), p. 401.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Albeverio, J. Rezende, and J. C. Zambrini, Probability and quantum symmetries II. The Theorem of Noether in quantum mechanics, in preparation.

    Google Scholar 

  33. W. Thirring, Quantum Mechanics of Atoms and Molecules, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  34. J. L. McCauley, Classical Mechanics, Cambridge University Press, Cambridge, UK, 1997.

    Google Scholar 

  35. M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    Google Scholar 

  36. M. Sharpe, General Theory of Markov processes, Academic Press, New York, 1988.

    MATH  Google Scholar 

  37. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Spaces and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994.

    Book  Google Scholar 

  38. K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer-Verlag, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Cruzeiro, A.B., Wu, L., Zambrini, J.C. (2000). Bernstein Processes Associated with a Markov Process. In: Rebolledo, R. (eds) Stochastic Analysis and Mathematical Physics. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1372-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1372-7_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7118-5

  • Online ISBN: 978-1-4612-1372-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics