Skip to main content

Abstract

The performance of a Diesel engine is analyzed for a model which includes losses due to mechanical friction and heat losses through the cylinder walls. Using the work output of the Diesel engine as an objective, the optimal piston trajectories for the compression and power stroke are determined simultaneously. Results for a linear approximation of the heat leakage are compared to a more realistic, empirical heat transfer law due to Annand. Optimal operating conditions are found and discussed and significant improvements in the engine’s efficiency relative to conventionally designed engines are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Mozurkewich and R. S. Berry: Optimal paths for thermodynamic systems: The ideal Otto cycle, J. Appl. Phys. 53, 34–42, (1982).

    Article  ADS  Google Scholar 

  2. K. H. Hoffmann, S. J. Watowich, and R. S. Berry: Optimal paths for thermodynamic systems: The ideal Diesel cycle, J. Appl. Phys. 58, 2125, (1985).

    Article  ADS  Google Scholar 

  3. M. H. Rubin: Optimal configuration of a class of irreversible heat engines II, Phys. Rev. A 19, 1277, (1979).

    Article  ADS  Google Scholar 

  4. C. F. Taylor: The Internal-Combustion Engine in Theory and Practice, volumes 1 and 2, MIT, Cambridge MA, 1977.

    Google Scholar 

  5. S. J. Watowich, K. H. Hoffmann and R. S. Berry: Intrinsically irreversible light-driven engine, J. Appl. Phys. 58, 2893–2901, (1985).

    Article  ADS  Google Scholar 

  6. S. J. Watowich and R. S. Berry: Optimal current paths for model electrochemical systems, J. Phys. Chem. 90, 4624–4631, (1986).

    Article  Google Scholar 

  7. A. E. Bryson and Y. C. Ho: Applied Optimal Control, Wiley, New York, 1975.

    Google Scholar 

  8. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin: Optimal Control, Nauka, Moscow, 1979.

    Google Scholar 

  9. P. Blaudeck and K. H. Hoffmann: Optimization of the power output for the compression and power stroke of the Diesel engine, Proceedings of the International Conference ECOS′95, Istambul, 1995, vol. 2, p. 754.

    Google Scholar 

  10. W. Nusselt: Der Wärmeübergang in den Verbrennungskraftmaschinen, Z. des Vereins deutscher Ingenieure 67, 692 and 708, (1923), in German.

    Google Scholar 

  11. G. Eichelberg: Temperaturverlauf und Wärmespannung in Verbrennungsmotoren, Forsch. Ing. Wes., 1923, in German.

    Google Scholar 

  12. V. D. Overbye, J. E. Bennethum, O. A. Uyehara, and P. S. Myers: Unsteady heat transfer in engines, Trans. Soc. Automot. Engrs. 69, 461, (1961).

    Google Scholar 

  13. G. Woschni: Die Berechnung der Wandverluste und der thermischen Belastung der Bauteile von Dieselmotoren, Motortechnische Zeitschrift 31, 491–499, (1970), in German.

    Google Scholar 

  14. G. Woschni: Experimental investigation of the heat transfer in internal combustion engines with insulated combustion chamber walls, 1989, Chapter 50, pp.53–65.

    Google Scholar 

  15. W. J. D. Annand: Heat transfer in the cylinder of reciprociating internal combustion engines, Proc. Inst. Mech. Eng. 177, 973–990, (1963).

    Article  Google Scholar 

  16. F. Angulo-Brown, J. A. Rocha-Martinez, and T. D. Navarrete-Gonzalez: A non-endoreversible Otto cycle model: Improving power output and efficiency, J. Phys. D: Appl. Phys. 29, 80–83, (1996).

    Article  ADS  Google Scholar 

  17. C. Wu and D. A. Blank: The effects of combustion on a work-optimized endoreversible Otto cycle, J. Inst. Energy 65, 86–89, (1992).

    Google Scholar 

  18. C. Wu and D. A. Blank: Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure, Energy Conversion and Management 34, 1255–1259, (1993).

    Article  Google Scholar 

  19. D. A. Blank and C. Wu: The effect of combustion on a power optimized endoreversible Diesel engine, Energy Conversion and Management 34, 493–498, (1993).

    Article  Google Scholar 

  20. W. Kleinschmidt: Die Wärmeübertragung in aufgeladenen Dieselmotoren aus neuerer Sicht, 5. Aufladetechnische Konferenz, Augsburg, 1993.

    Google Scholar 

  21. W. Pflaum and K. Mollenhauer: Wärmeübergang in der Verbrennungskraftmaschine, Springer-Verlag, Wien, 1977.

    Book  Google Scholar 

  22. B. Andresen, R. S. Berry, A. Nitzan, and P. Salamon: Thermodynamics in finite time I. The step-Carnot cycle, Phys. Rev. A 15, 2086–2093, (1977).

    Article  ADS  Google Scholar 

  23. B. Andresen, P. Salamon and S. R. Berry: Thermodynamics in finite time: extremals for imperfect heat engines, J. Chem. Phys. 66, 1571, (1977).

    Article  ADS  Google Scholar 

  24. P. Salamon, A. Nitzan, B. Andresen and R. S. Berry: Minimum entropy production and the optimization of heat engines, Phys. Rev. A 21, 2115, (1980).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. H. Van Gerpen and H. N. Shapiro: Second law analysis of Diesel engine combustion, in: Analysis and Design of Advanced Energy Systems: Computer-Aided Analysis and Design, Proc. ASME Winter Annual Meeting, Boston, Dec. 13-18, 1988 (eds. M. J. Moran, R. A. Bajura, and G. Tsatsaronis), vol. 3-3, pp. 53–65, 1988.

    Google Scholar 

  26. N. M. Al-Najem and J. M. Diab: Energy-exergy analysis of a Diesel engine, Heat Recovery Systems & CEP 12, 525–529, (1992).

    Article  Google Scholar 

  27. V. A. Mironova, A. M. Tsirlin, V. A. Kazakov, and S. R. Berry: Finitetime thermodynamics: Exergy and optimization time-constrained processes, J. Appl. Phys. 76, 629–636, (1994).

    Article  ADS  Google Scholar 

  28. A. Bejan: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys. 79, 1191–1218, (1996).

    Article  ADS  Google Scholar 

  29. K. H. Hoffmann, J. M. Burzler, and S. Schubert: Endoreversible thermodynamics, J. Non-Equilib. Thermodynam. 22, 311–355, (1997).

    Google Scholar 

  30. K. H. Hoffmann, S. Schubert, and J. M. Burzler: Endoreversible dynamics, J. Non-Equilib. Thermodynam., to appear.

    Google Scholar 

  31. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, and E. F. Mishtchenko: The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.

    MATH  Google Scholar 

  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: Numerical Recipes in C, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  33. Y. B. Band, O. Kafri, and P. Salamon: Maximum work production from a heated gas in a cylinder with piston, Chem. Phys. Lett. 72, 127–130, (1980).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burzler, J.M., Blaudeck, P., Hoffmann, K.H. (2000). Optimal Piston Paths for Diesel Engines. In: Sieniutycz, S., De Vos, A. (eds) Thermodynamics of Energy Conversion and Transport. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1286-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1286-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7079-9

  • Online ISBN: 978-1-4612-1286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics