Skip to main content

Pulsatile Flow in a Rigid Tube

  • Chapter
The Physics of Pulsatile Flow

Part of the book series: Biological Physics Series ((BIOMEDICAL))

Abstract

Flow in a tube in which the driving pressure varies in time is governed by Eq.3.2.9, namely,

$$\rho \frac{{\partial u}}{{\partial t}} + \frac{1}{\rho }\frac{{\partial p}}{{\partial x}} = \mu \left( {\frac{{{\partial ^2}u}}{{\partial {r^2}}} + \frac{1}{r}\frac{{\partial u}}{{\partial r}}} \right)$$

Providing that all the simplifying assumptions on which the equation is based are still valid, the equation provides a forum for a solution in which the pressure p is a function of x and t while the velocity u is a function of r and t. Before obtaining this solution, it is important to reiterate the assumptions on which the equation is based, because these assumptions define the idealized features of the flow that the solution represents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Lighthill M, 1975. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia.

    Book  MATH  Google Scholar 

  2. Walker JS, 1988. Fourier Analysis. Oxford University Press, New York.

    MATH  Google Scholar 

  3. Brigham EO, 1988. The Fast Fourier Transform and its Applications. Prentice Hall, Englewood Cliffs, New J ersey.

    Google Scholar 

  4. McLachlan NW, 1955. Bessel Functions for Engineers. Clarendon Press, Oxford.

    Google Scholar 

  5. Watson GN, 1958. A Treatise on the Theory of Bessel Functions. Cambridge University Press. Cambridge.

    Google Scholar 

  6. Sexl T, 1930. Über den von E.G. Richardson entdeckten “Annulareffekt. ” Zeits chrift für Physik 61:349–362.

    MATH  Google Scholar 

  7. Womersley JR, 1955. Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: The linear approximation for long waves. Philosophical Magazine 46:199–221.

    MathSciNet  MATH  Google Scholar 

  8. Uchida S, 1956. The pulsating viscous flow superimposed on the steady laminar motion of incompressible fluid in a circular pipe. Zeitschrift für angewandte Mathematik und Physik 7:403–422.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. McDonald DA, 1974. Blood flow in arteries. Edward Arnold, London.

    Google Scholar 

  10. Milnor WR, 1989. Hemodynamics. Williams and Wilkins, Baltimore.

    Google Scholar 

  11. Khamrui SR, 1957. On the flow of a viscous liquid through a tube of elliptic section under the influcnce of a periodic gradient. Bulletin of thc Calcutta Mathematical Society 49:57–60.

    MathSciNet  MATH  Google Scholar 

  12. Begum R, Zamir M, 1990. Flow in tubes of non-circular cross sections. In: Rahman M (ed), Ocean Waves Mechanics: Computati onal Fluid Dynamics and Mathematical Modeling. Computational Mechanics Publications, Southampton.

    Google Scholar 

  13. Duan B, Zamir M, 1991. Approximate solut ion for pulsatile flowin tubes of slightly noncircular cross-sections. Utilitas Mathematica 40:13–26.

    MathSciNet  MATH  Google Scholar 

  14. Quadir R, Zamir M, 1997. Entry length and flow development in tubes of reetangular and elliptic cross sect ions. In: Rahman M (cd), Laminar and TUrbulent Boundary Layers. Computational Mechanics Publications, Southampton.

    Google Scholar 

  15. Haslam M, Zamir M, 1998. Pulsatilc flow in tubes of elliptic cross sect ions. Annals of Biomedical Engineering 26:1–8.

    Article  Google Scholar 

  16. Moon PR, Spencer DE, 1961. Field Theory for Engineers. Van Nostrand, Princeton, New J ersey.

    MATH  Google Scholar 

  17. McLachlan NW, 1964. Theory and Application of Mathieu Functions. Dover Publications, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zamir, M. (2000). Pulsatile Flow in a Rigid Tube. In: The Physics of Pulsatile Flow. Biological Physics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1282-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1282-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7077-5

  • Online ISBN: 978-1-4612-1282-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics