Skip to main content

Ecosystem Climate Manipulations

  • Chapter
Methods in Ecosystem Science

Abstract

Human activities such as fossil fuel burning and deforestation are expected to cause global climate change of a rate and magnitude unmatched in the historical record. Results from climate modeling studies indicate that the earth is likely to experience an increase in global average temperature of several degrees Celsius by the end of the next century (IPCC 1995). This temperature increase, and other associated climate changes, will have far-reaching effects on the natural environment and human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamse, P.; Britz, S.J. Rapid fluence-dependent responses to ultraviolet-B radiation in cucumber leaves: The role of UV-absorbing pigments in damage protection. J. Plant Physiol. 148:57–62; 1996.

    CAS  Google Scholar 

  • Anderson, J.E.; Williams, J.; Kriedemann, P.E.; Austin, M.P.; Farquhar, G.D. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Aust. J. Plant Physiol. 23:311–320; 1996.

    Google Scholar 

  • Anderson, J.M. Responses of soils to climate change. In: Woodward, F.I., ed. Global Climate Change: The Ecological Consequences. Advances in Ecological Research. Vol. 22. New York: Academic Press, 1992:163–210.

    Google Scholar 

  • Barnes, P.W.; Flint, S.D.; Caldwell, M.M. Early-season effects of supplemented solar UV-B radiation on seedling emergence, canopy structure, simulated stand photosynthesis and competition for light. Global Change Biol. 1:43–53; 1995.

    Google Scholar 

  • Beerling, D.J.; Woodward, F.I. The climate change experiment (CLIMEX): Phenology and gas exchange responses of boreal vegetation to global change. Global Ecol. Biogeogr. Lett. 4:17–26; 1994.

    Google Scholar 

  • Bjorn, L.O.; Murphy, T.M. Computer calculation of solar ultraviolet radiation at ground level. Physiol. Vegetat. 23:555–561; 1985.

    Google Scholar 

  • Bridgham, S.D.; Pastor, J.; Updegraff, K.; Janssens, J.A.; Malterer, T.J. [Abstract] Paper presented at the Ecological Society of America Annual Meeting, Snowbird, Utah, July 30 to August 3, 1995.

    Google Scholar 

  • Brooks, P.D.; Williams, M.W.; Schmidt, S.K. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113; 1996.

    Google Scholar 

  • Burke, I.C.; Elliott, E.T.; Cole, C.V. Influence of macroclimate, landscape position, and management on soil organic matter in agroecosystems. Ecol. Applic. 5:124–131; 1995.

    Google Scholar 

  • Caldwell, M.M.; Camp, L.B.; Warner, C.W.; Flint, S.D. Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: Worrest, R.C.; Caldwell, M.M., eds. Stratospheric Ozone Reduction, Solar Ultraviolet Radiation, and Plant Life. Berlin: Springer-Verlag; 1986.

    Google Scholar 

  • Caldwell, M.M.; Flint, S.D. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climat. Change 28:375–394; 1994.

    CAS  Google Scholar 

  • Caldwell, M.M.; Teramura, A.H.; Tevini, M. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evolut. 4:363–367; 1989.

    CAS  Google Scholar 

  • Carpenter, S.R. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680; 1996.

    Google Scholar 

  • Chapin, F.S.; Shaver, G.R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840; 1996.

    Google Scholar 

  • Chapin, F.S.; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711; 1995.

    Google Scholar 

  • Coulson, S.; Hodkinson, I.D.; Strathdee, A.; Bale, J.S.; Block, W.; Worland, M.R.; Webb, N.R. Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny-Alesund, Svalbard. Polar Biol. 13:67–70; 1993.

    Google Scholar 

  • Coulson, S.J.; Hodkinson, I.D.; Webb, N.R.; Block, W.; Bale, J.S.; Strathdee, A.T.; Worland, M.R.; Wooley, C.; Worland, M.R.; Wooley, C. Effects of experimental temperature elevation on high-arctic soil micro-arthropod populations. Polar Biol. 16:147–153; 1996.

    Google Scholar 

  • Davis, M.B.; Zabinski, C. Changes in geographical range resulting from greenhouse warming: Effects on biodiversity in forests. In: Peters, R.L.; Lovejoy, T.E., eds. Global Warming and Biological Diversity. New Haven, CT: Yale Univ. Pr.; 1992:297–308.

    Google Scholar 

  • Debevec, E.M.; Maclean, S.F. Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic Alp. Res. 25:56–62; 1993.

    Google Scholar 

  • Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. Boulder, CO: National Center for Atmospheric Research; 1986.

    Google Scholar 

  • Dickson, D. Aerosols role simulated in new global warming model. Nature 374:487–487; 1995.

    CAS  Google Scholar 

  • Dohring, T.; Kofferlein, M.; Thiel, S.; Seidlitz, H.K. Spectral shaping of artificial UV-B irradiation for vegetation stress research. J. Plant Physiol. 148:115–119; 1996.

    Google Scholar 

  • Dudzik, M.; Harte, J.; Jassby, A.; Lapan, E.; Levy, D.; Rees, J. Some considerations in the design of aquatic microcosms for plankton studies. Int. J. Environ. Stud. 13:125–130; 1979.

    CAS  Google Scholar 

  • Dunne, J. Personal Communication, University of California, Berkeley, CA, 1996.

    Google Scholar 

  • Edwards, N.T.; Norby, R.J. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant Soil 206:85–97; 1998.

    CAS  Google Scholar 

  • Ehleringer, J.; Field, C. Scaling Physiological Processes: Leaf to Globe. San Diego, CA: Academic; 1993.

    Google Scholar 

  • Fiscus, E.L.; Booker, F.L.; Miller, J.E. Response of soybean bulk leaf water relations to ultraviolet-B irradiation. J. Plant Physiol. 148:63–68; 1996.

    CAS  Google Scholar 

  • Flint, S.D.; Caldwell, M.M. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors. J. Plant Physiol. 148:107–114; 1996.

    CAS  Google Scholar 

  • Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycl. 10:603–628; 1996.

    CAS  Google Scholar 

  • Galen, C.; Stanton, M.L. Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557; 1995.

    Google Scholar 

  • Gates, W.L.; Henderson-Sellers, A.; Boer, G.J.; Folland, C.K.; McAvaney, B.J.; Semazzi, F., Smith, N., Weaver, A.J.; Zeng, Q.-C. Climate models: Evaluation. In: Houghton, J.T.; Meira Filho, L.G.; Callander, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995: 483–516.

    Google Scholar 

  • Green, A.E.S. The penetration of ultraviolet radiation to the ground. Physiol. Plant 58:351–359; 1983.

    Google Scholar 

  • Green, A.E.S.; Cross, K.R.; Smith, L.A. Improved analytic characterization of ultraviolet skylight. Photochem. Photobiol. 31:59–65; 1980.

    Google Scholar 

  • Greenberg, B.M.; Wilson, M.I.; Gerhardt, K.E.; Wilson, K.E. Morphological and physiological responses of Brassica napus to ultraviolet-B radiation: Photo-modification of ribulose-1,5-bisphosphate carboxylase/oxygenase and potential acclimation processes. J. Plant Physiol. 148:78–85; 1996.

    CAS  Google Scholar 

  • Hanson, P.J.; Edwards, N.T. Personal Communication, Oak Ridge, TN, 1996.

    Google Scholar 

  • Hansen, J.; Fung, L; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G. Global climate changes as forecast by the Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. 93:9341–9364; 1988a.

    CAS  Google Scholar 

  • Hansen, J.; Rind, D.; DelGenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Reudy, R.; Karl, T. Regional greenhouse climate effects. In: Coping with Climate Change. Proceedings of the Second North American Conference on Preparing for Climate Change. Washington, DC: Climate Institute; 1988b.

    Google Scholar 

  • Harte, J.; Jensen, D.; Torn, M.S. The nature and consequences of indirect linkages between climate change and biological diversity. In: Peters, R.; Lovejoy, T., eds. Global Warming and Biological Diversity. New Haven, CT: Yale Univ. Pr.; 1992.

    Google Scholar 

  • Harte, J.; Rawa, A.; Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biogeochem. 28:313–322; 1995a.

    Google Scholar 

  • Harte, J.; Shaw, R. Shifting dominance within a montane vegetation community: Results of a climate-warming experiment. Science 267:876–880; 1995.

    PubMed  CAS  Google Scholar 

  • Harte, J.; Torn, M.S.; Chang, F.R.; Feifarek, B.; Kinzig, A.R; Shaw, R.; Shen, K. Global warming and soil microclimate: Results from a meadow-warming experiment. Ecol. Applic. 5:132–150; 1995b.

    Google Scholar 

  • Hartmann, D.L. Modeling climate change. In: MacDonald, G.J.; Sertorio, L., eds. Global Climate and Ecosystem Change. NATO ASI Series B: Physics. Vol. 240, New York: Plenum; 1990.

    Google Scholar 

  • Harvey, L.D.D.; Schneider, S.H. Transient climate response to external forcing on 100–104 year time-scales. 1. Experiments with globally-averaged, coupled, atmosphere, land, and ocean energy balance models. J. Geophys. Res. 90:2191–2206; 1985.

    Google Scholar 

  • Hattenschwiler, S.; Korner, C. System-level adjustments to elevated CO2 in model spruce ecosystems. Global Change Biol. 2:377–387; 1996.

    Google Scholar 

  • Henderson-Sellers, A.; McGuffie, K. Land-surface characterization in greenhouse climate simulations. International J. Climatol. 14:1065–1094; 1994.

    Google Scholar 

  • Hillier, S.H.; Sutton, F.; Grime, J.P. A new technique for the experimental manipulation of temperature in plant communities. Funct. Ecol. 8:755–762; 1994.

    Google Scholar 

  • Hunt, H.W.; Elliott, E.T.; Detling, J.K.; Morgan, J.A.; Chen, D.X. Responses of a C-3 and a C-4 perennial grass to elevated CO2 and temperature under different water regimes. Global Change Biol. 2:35–47; 1996.

    Google Scholar 

  • [IPCC] Intergovernmental Panel on Climate Change. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995.

    Google Scholar 

  • Jensen, D.B. Population Differentiation in Tree-Ring Growth Responses of White Fir (Abies concolor) to Climate: Implications for Predicting Forest Responses to Climate Change. Doctoral thesis, University of California, Berkeley, CA; 1993.

    Google Scholar 

  • Kattenberg, A.; Maskell, K. Climate models: Projections of future change. In: Hougton, J.T.; Meira Filho, L.G.; Callender, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995:285–357.

    Google Scholar 

  • Keeling, C.D.; Whorf, T.P. Atmospheric CO2 records from sites in the SIO air sampling networked. In: Trends: A Compendium of Data on Global Change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory; 1998.

    Google Scholar 

  • Kennedy, A.D. Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17:131–140; 1994.

    Google Scholar 

  • Kennedy, A.D. Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Funct. Ecol. 9:340–350; 1995a.

    Google Scholar 

  • Kennedy, A.D. Simulated climate change: Are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biol. 1:29–42; 1995b.

    Google Scholar 

  • Klein, J. Personal Communication, University of California, Berkeley, CA, 1998.

    Google Scholar 

  • Korner, C.; Arnone, J.A. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675; 1992.

    PubMed  CAS  Google Scholar 

  • Lashof, D.A. The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climat. Change 14:213–242; 1989.

    CAS  Google Scholar 

  • Lawton, J.H. The Ecotron facility at Silwood Park: The value of big bottle experiments. Ecology 77:665–669; 1996.

    Google Scholar 

  • Lawton, J.H.; Naeem, S.; Woodfin, R.M.; Brown, V.K.; Gange, A.; Godfray, H.J.C.; Heads, P.A.; Lawler, S.; Magda, D.; Thomas, C.D.; Thompson, L.J.; Young, S. The Ecotron: A controlled environmental facility for the investigation of population and ecosystem processes. Philos. Trans. R. Soc. Lond. [Biol.] 341:181–194; 1993.

    Google Scholar 

  • Loik, M.E.; Harte, J. High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia 108:224–231; 1996.

    Google Scholar 

  • Lubchenco, J. The sustainable biosphere initiative: An ecological research agenda. A report from the Ecological Society Of America. Ecology 72:371–412; 1991.

    Google Scholar 

  • Mackerness, S.A.H.; Butt, P.J.; Jordan, B.R.; Thomas, B. Amelioration of Ultraviolet-B-induced down-regulation of MRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis. J. Plant Physiol. 148:100–106; 1996.

    CAS  Google Scholar 

  • MacPherson, G. Personal communication, University of Arizona, Tucson, AZ, 1995.

    Google Scholar 

  • Manabe, S.; Weatherald, R.T. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci. 44:1211–1235; 1987.

    Google Scholar 

  • Marion, G.M.; Henry, G.H.R.; Freckman, D.W.; Johnstone, J.; Jones, G.; Jones, M.H.; L vesque, E.; Molau, U.; Molgaard, P.; Parsons, A.N.; Svoboda, J.; Virginia, R.A. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biol. 3(Supl. 1):20–32; 1997.

    Google Scholar 

  • Mark, U.; Sailemark, M.; Tevini, M. Effects of solar UVB radiation on growth, flowering and yield of central and southern european maize cultivars (Zea mays l). Photochem. Photobiol. 64:457–463; 1996.

    CAS  Google Scholar 

  • Naeem, S.; Thompson, L.J.; Lawler, S.P.; Lawton, J.H.; Woodfin, R.M. Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737; 1994.

    Google Scholar 

  • Nijs, I.; Kockelbergh, F.; Teughels, H.; Blum, H.; Hendrey, G.; Impens, I. Free Air Temperature Increase (FATI): A new tool to study global warming effects on plants in the field. Plant Cell Environ. 19:495–502; 1996.

    Google Scholar 

  • Norby, R.J.; Edwards, N.T.; Riggs, J.S.; Abner, C.H.; Wullscleger, S.D.; Gunderson, C.A. Temperature-controlled open-top chambers for global change research. Global Change Biol. 3:259–267; 1997.

    Google Scholar 

  • [NSFESP] National Science Foundation, Ecosystem Studies Program. Soil-warming experiments in global change research, Woods Hole, MA, September 27 and 28, 1991.

    Google Scholar 

  • Oechel, W.C.; Riechers, G.; Lawrence, W.T.; Prudhomme, T.J.; Grulke, N.; Hastings, S.J. CO2LT: An automated, null-balance system for studying the effects of elevated CO2 and global climate change on unmanaged ecosystems. Funct. Ecol. 6:86–100; 1992.

    Google Scholar 

  • Olszyk, D.; Dai, Q.J.; Teng, P.; Leung, H.; Luo, Y.; Peng, S.B. UV-B effects on crops: Response of the irrigated rice ecosystem. J. Plant Physiol. 148:26–34; 1996.

    CAS  Google Scholar 

  • Pacala, S.; and Hurtt, G. Terrestrial vegetation and climate change: Integrating models and experiments. In: Kareiva, P.; Kingsolver, P.; Huey, R., eds. Biotic Interactions and Global Change. Sunderland, MA: Sinauer; 1993: 57–74.

    Google Scholar 

  • Peterjohn, W.T.; Melillo, J.M.; Bowles, F.P.; Steudler, P.A. Soil warming and trace gas fluxes: Experimental design and preliminary flux results. Oecologia 93:18–24; 1993.

    Google Scholar 

  • Peterjohn, W.T.; Melillo, J.M.; Steudler, P.A.; Newkirk, K.M.; Steudler, P.A.; Newkirk, K.M.; Bowles, F.P.; Aber, J.D. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Applic. 4:617–625; 1994.

    Google Scholar 

  • Randall, D.A.; Dazlich, D.A.; Zhang, C.; Denning, A.S.; Sellers, P.J.; Tucker, C.J.; Bounoua, L.; Los, S.O.; Justice, C.O.; Fung, I. A revised land surface parameterization (SIB2) for GCMs. 3. The greening of the Colorado State University general circulation model. J. Climate 9:738–763; 1996.

    Google Scholar 

  • Rau, W.; Hofmann, H. Sensitivity to UV-B of plants growing in different altitudes in the Alps. J. Plant Physiol. 148:21-25; 1996.

    Google Scholar 

  • Rawat, A.S.; Purohit, A.N. CO2 and water vapour exchange in 4 alpine herbs at 2 altitudes and under varying light and temperature conditions. Photosyn. Res. 28:99–108; 1991.

    Google Scholar 

  • Repo, T.; Hanninen, H.; Kellomaki, S. The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant Cell Environ. 19:209–216; 1996.

    Google Scholar 

  • Ross, R.J.; Elliott, W.P. Tropospheric water vapor climatology and trends over North America: 1973-93. J. Climate 9:3561–3574; 1996.

    Google Scholar 

  • Rosswall, T., Woodmansee, R.G.; Risser, P.G. Scales and global change, Chichester, England: Wiley; 1988.

    Google Scholar 

  • Rundel, R. Computation of spectral distribution and intensity of solar UV-B radiation. In: Worrest, R.C.; Caldwell, M.M., eds. Stratospheric Ozone Reduction, Solar UV, and Plant Life. NATO ASI Series G. Vol. 8. New York: Plenum; 1986:49–62.

    Google Scholar 

  • Rykbost, K.A.; Boersma, L.; Mack, H.J.; Schmisseur, W.E. Yield response to soil warming: Agronomic crops. Agron. J. 67:733–738; 1975.

    Google Scholar 

  • Saleska, S.; Harte, J.; Torn, M. Effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biol. 5:125–142; 1999.

    Google Scholar 

  • Sato, N.; Sellers, P.J.; Randall, D.A.; Schneider, E.K.; Shukla, J.; Kinter, J.L.; Hou, Y.T.; and Albertazzi, E. Effects of implementing the Simple Biosphere Model in a general circulation model. J. Atmos. Sci. 46:2757–2782; 1989.

    Google Scholar 

  • Schimel, D.; Alves, D.; Enting, I.; Heimann, M.; Joos, F.; Raynaud, D.; Wigley, T.; Prather, M.; Derwent, R.; Enhalt, D.; Fraser, P.; Sanhueza, E.; Zhou, X.; Jonas, P.; Charlson, R.; Rodhe, H.; Sadavisan, S.; Shine, K.P.; Fouquart, Y.; Ramaswamy, V.; Solomon, S.; Srinivasan, J.; Albirtton, D.; Derwent, R.; Isakson, I.; Lal, M.; Wuebbles, D. Radiative forcing of climate. In: Houghton, J.T.; Meira Filho, L.G.; Callender, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995:65–132.

    Google Scholar 

  • Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; Sato, N.; Field, C.B.; Henderson-Sellers, A. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509; 1997.

    PubMed  CAS  Google Scholar 

  • Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 43:505–530; 1986.

    Google Scholar 

  • Shen, K.P. A modelling study of experimental warming of a sub-alpine meadow. Doctoral thesis, University of California, Berkeley, CA, 1998.

    Google Scholar 

  • Stanton, M.L.; Rejmanek, M.; and Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arctic Alp. Res. 26:364–374; 1994.

    Google Scholar 

  • Strathdee, A.T.; Bale, J.S.; Block, W.C.; Coulson, S.J.; Hodkinson, I.D.; Webb, N.R. Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (hemiptera, aphididae) on Spitsbergen. Oecologia 96:457–465; 1993.

    Google Scholar 

  • Sturges, D.L. Response of mountain big sagebrush to induced snow accumulation. J. Appl. Ecol. 26:1035–1041; 1989.

    Google Scholar 

  • Sud, Y.C.; Sellers, P.J.; Mintz, Y., Chou, M.D.; Walker, G.K.; Smith, W.E. Influence of the biosphere on the global circulation and hydrologic cycle: a GCM simulation experiment. Agric. For. Meteorol. 52:133–180; 1990.

    Google Scholar 

  • Tabler, R.D. Geometry and density of drifts formed by snow fences. J. Glaciol. 26:405–419; 1980.

    Google Scholar 

  • Tate, K.R. Assessment, based on a climosequence of soils in tussock grasslands, of soil carbon storage and release in response to global warming. J. Soil Sci. 43:697–707; 1992.

    CAS  Google Scholar 

  • Tevini, M.; Mark, M.; Saile, M. Plant experiments in growth chambers illuminated with natural sunlight. In: Payer, H.D.; Pfirrman, T.; Mathy, P., eds. Environmental Research with Plants in Closed Chambers, Brussels: Commission of the European Communities; 1989:240–251.

    Google Scholar 

  • Tissue, D.T.; Oeschel, W.C. Response of Eriphorum vaginatum to elevated CO2 and temperature in the Alaskan Arctic tundra. Ecology 76:721–733; 1987.

    Google Scholar 

  • Torn, M.S.; Harte, J. Methane consumption by montane soils: Implications for positive and negative feedback with climatic change. Biogeochemistry 32:53–67; 1996.

    Google Scholar 

  • Townsend, A.R.; Vitousek, P.M.; Trumbore, S.E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733; 1995.

    Google Scholar 

  • Trumbore, S.E.; Chadwick, O.A.; Amundson, R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396; 1996.

    CAS  Google Scholar 

  • Van Cleve, K.; Dyrness, C.T.; Viereck, L.A.; Fox, J.; Chapin, F.S.; Oeschel, W. Tiaga ecosystems in interior Alaska. BioScience 33:39–44; 1983.

    Google Scholar 

  • Van Cleve, K.; Oechel, W.C.; Hom, J.L. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can. J. For. Res. 20:1530–1535; 1990.

    Google Scholar 

  • Verhoef, H.A. The role of soil microcosms in the study of ecosystem processes. Ecology 77:685–690; 1996.

    Google Scholar 

  • Verseghy, D.L.; McFarlane, N.A.; Lazare, M. CLASS: A Canadian land surface scheme for GCMs. 2. Vegetation model and coupled runs. Int. J. Climatol. 13:347–370; 1993.

    Google Scholar 

  • Vitousek, P.M.; Matson, P.A. Effects of tropical deforestation on global and regional atmospheric chemistry—Comment. Climat. Change 19:159–162; 1991.

    CAS  Google Scholar 

  • Walker, B.H. Ecological consequences of atmospheric and climate change. Climat. Change 18:301–316; 1991.

    Google Scholar 

  • Woodward, LE A review of the effects of climate on vegetation: Ranges, competition, and composition. In: Peters, R.L.; Lovejoy, T.E., eds. Global Warming and Biological Diversity. New Haven: Yale Univ. Pr.; 1992:105–123.

    Google Scholar 

  • Wynn-Williams, D.D. Microbial colonization processes in Antarctic fellfield soils: An experimental overview. Proc. NIPR Symp. Polar Biol. 3:164–178; 1990.

    Google Scholar 

  • Wynn-Williams, D.D. Plastic cloches for manipulating natural terrestrial environments. In: Wynn-Williams, D.D., ed. BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research. Cambridge: Scientific Committee on Antarctic Research; 1992.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shen, K.P., Harte, J. (2000). Ecosystem Climate Manipulations. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics