Skip to main content

Assessing Ecosystem-Level Water Relations Through Stable Isotope Ratio Analyses

  • Chapter
Methods in Ecosystem Science

Abstract

Virtually all elements of biological interest have multiple stable isotopic forms and the fractionation events associated with biological and physical processes help to create spatial and temporal variations in isotopic abundance that can be used to understand the dynamics of ecological systems. Stable isotope ratio analyses at natural abundance levels can provide integrated information on ecosystem functioning, such as variations in water-use activities by different elements within an ecosystem (Ehleringer et al. 1993; Dawson and Ehleringer 1998). Stable isotope ratio analyses do not provide information on water flux rates through the ecosystem, but instead they help constrain the analysis of flux data, such as through identifying those specific soil layers that are the source of current moisture use by the vegetation or the ratio of carbon dioxide-to-water (CO2-to-H2O) flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, G.B.; Barnes, C.J.; Hughes, M.W. The distribution of deuterium and 18O in dry soils. 2. Experimental. J. Hydrol. 64:377–397; 1983.

    Article  CAS  Google Scholar 

  • Bariac, T.; Rambal, S.; Jusserand, C.; Berger, A. Evaluating water fluxes of field-grown alfalfa from diurnal observations of natural isotope concentrations, energy budget and ecophysiological parameters. Ag. For. Meteorol. 48:263–283; 1989.

    Article  Google Scholar 

  • Bennett, C.F.; Timell, T.E. Preparation of cellulose trinitrate. Sven. Papperstidn. 58:281–286; 1955.

    CAS  Google Scholar 

  • Brand, W. High precision isotope ratio monitoring techniques in mass spectrometry. J. Mass Spec. 31:226–235; 1996.

    Article  Google Scholar 

  • Brunei, J.-P.; Walker, G.R.; Kennett-Smith, A.K. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. J. Hydrol. 167:351–368; 1995.

    Article  Google Scholar 

  • Buchanan, D.L.; Corocoran, B.J. Sealed tube combustions for the determination of carbon-14 and total carbon. Anal. Chem. 31:1635–1638; 1959.

    Article  CAS  Google Scholar 

  • Cole, D.R.; Monger, H.C. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368:533–536; 1994.

    Article  CAS  Google Scholar 

  • Coleman, M.C.; Shepherd, T.J.; Durham, J.J.; Rouse, J.D.; Moore, G.R. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54:993–995; 1982.

    Article  CAS  Google Scholar 

  • Compston, W.; Epstein, S. A method for the preparation of carbon dioxide from water vapor for oxygen isotope analysis. Trans. Am. Geophys. Union 39:511–512; 1958.

    Google Scholar 

  • Cormie, A.B.; Schwarcz, H.P.; Gray, J. Determination of the hydrogen isotopic composition of bone collagen and correction for hydrogen exchange. Geochim. Cosmo. Acta 58:265–375; 1994.

    Google Scholar 

  • Craig, H. Isotopic variations in meteoric waters. Science 133:1702–1703; 1961.

    Article  PubMed  CAS  Google Scholar 

  • Craig, H.; Gordon, L. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi, E., ed. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto 1965. Pisa: Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare; 1965:9–130.

    Google Scholar 

  • Cramer V.; Thorburn P.; Fraser G.; Stewart G. Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland Australia. Ag. Water Manage. 39:(2-3): 187–204; 1999

    Google Scholar 

  • Dawson, T.E. Water sources of plants as determined from xlyem-water isotopic composition: Perspectives on plant competition, distribution, and water relations. In: Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D., eds. Stable Isotopes and Plant Carbon-Water Relations. San Diego, CA: Academic; 1993a:465–496.

    Google Scholar 

  • Dawson, T.E. Hydraulic lift and water use in plants: Implications for performance, water balance and plant-plant interactions. Oecologia 95:565–574; 1993b.

    Google Scholar 

  • Dawson, T.E. Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol. 16:263–272; 1996.

    Article  PubMed  Google Scholar 

  • Dawson, T.E. Fog in the California redwood forest: Ecosystem inputs and use by plants. Oecologia 117:476–485; 1998.

    Article  Google Scholar 

  • Dawson, T.E.; Ehleringer, J.R. Stremside trees that do not use stream water. Nature 350:335–337; 1991.

    Article  Google Scholar 

  • Dawson, T.E.; Ehleringer, J.R. Isotopic enrichment of water in the “woody” tissues of plants: Implications for water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochim. Cosmo. Acta 57:3487-3492; 1993.

    Google Scholar 

  • Dawson, T.E.; Ehleringer, J.R. The role of plants in catchment-level hydraulic processes: Insights from stable isotope studies. In: Kendall, C.; McDonnell, J.J., eds. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier; 1998:165–202.

    Google Scholar 

  • Dawson, T.E.; Pate, J.S. Seasonal water uptake and movement in root systems of Australian phreatophytic plants of dimorphic root morphology: A stable isotope investigation. Oecologia 107:13–20; 1996.

    Article  Google Scholar 

  • Dawson, T.E.; Pausch, R.C.; Parker, H.M. The role of hydrogen and oxygen stable isotopes in understanding water movement along the soil-plant-atmosphere continuum. In: Griffiths, H., ed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford: BIOS; 1998:169–183.

    Google Scholar 

  • DeNiro, M.J. The effects of different methods of preparing cellulose nitrate on the determination of the D/H ratios of non-exchangeable hydrogen in cellulose. Earth Planet Let. 54:177–185; 1981.

    Article  CAS  Google Scholar 

  • DeNiro, M.J.; Cooper, L.W. Post photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochim. Cosmochim. Acta 53:2573–2580; 1989.

    Article  CAS  Google Scholar 

  • Dugan, J.P.; Borthwick, J.; Harmon, R.S.; Gagnier, M.A.; Glahn, J.E.; Kinsel, E.P.; MacLeod, S.; Viglino, J.A.; Hess, J.W. Guanidine hydrochloride method for determination of water oxygen isotope ratios and the oxygen-18 fractionation between carbon dioxide and water at 25°C. Anal. Chem. 57:1734–1736; 1985.

    Article  CAS  Google Scholar 

  • Duquesnay, A.; Bréda, N.; Stievenard, M.; Dupouey, J.L. Changes of tree-ring δ13C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant Cell Environ. 21:565–572; 1998.

    Article  Google Scholar 

  • Ebdon, J.S.; Petrovic, A.M.; Dawson, T.E. Relationship between carbon isotope discrimination, water use efficiency and evapotranspiration rate in Kentucky blue-grass turfgrass. Crop Science 38:157–162; 1998.

    Article  Google Scholar 

  • Edwards, T.W.D. New contributions to isotope dendro-climatology from studies of plants. Geochim. Cosmochim. Acta 54:1843–1844; 1990.

    Article  CAS  Google Scholar 

  • Ehleringer, J.R. 13C/12C fractionation and its utility in terrestrial plant studies. In: Coleman, D.C.; Fry, B., eds. Carbon Isotope Techniques. New York: Academic; 1991:187–200.

    Google Scholar 

  • Ehleringer, J.R.; Cook, C.S. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based upon small-flask sampling. Tree Physiol. 18:513–519; 1998.

    Article  PubMed  Google Scholar 

  • Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 15:1073–1082; 1992.

    Article  CAS  Google Scholar 

  • Ehleringer, J.R.; Evans, R.D.; Williams, D. Assessing sensitivity to change in desert ecosystems: A stable isotope approach. In: Griffiths, H., ed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford: BIOS; 1998:223–237.

    Google Scholar 

  • Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D., eds. Stable Isotopes and Plant Carbon/Water Relations. San Diego, CA: Academic; 1993.

    Google Scholar 

  • Ehleringer, J.R.; Phillips, S.L.; Schuster, W.F.S.; Sandquist, D.R. Differential utilization of summer rains by desert plants: Implications for competition and climate change. Oecologia 88:430–434; 1991.

    Article  Google Scholar 

  • Epstein, S.; Yapp, C. Isotope tree thermometers. Nature 266:477–478; 1977.

    Article  CAS  Google Scholar 

  • Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. 40:503–537; 1989.

    Article  CAS  Google Scholar 

  • Farquhar, G.D.; Lloyd, J. Carbon and oxygen isotope effects in the exchange of carbon dioxide between plants and the atmosphere. In: Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D., eds. Stable Isotopes and Plant Carbon/Water Relations. San Diego, CA: Academic; 1993:47–70.

    Google Scholar 

  • Farquhar, G.D.; Lloyd, J.; Taylor, J.A.; Flanagan, L.B.; Syversten, J.P.; Hubick, K.T.; Wong, S.C.; and Ehleringer, J.R. Vegetation effects on the isotopic composition of oxygen in atmospheric CO2. Nature 363:439–443; 1993.

    Article  CAS  Google Scholar 

  • Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9:121–137; 1982.

    Article  CAS  Google Scholar 

  • Feild, T.S.; Dawson, T.E. Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology 79:1448–1452; 1998.

    Google Scholar 

  • Flanagan, L.B.; Bain, J.F.; Ehleringer, J.R. Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88:394–400; 1991a.

    Article  Google Scholar 

  • Flanagan, L.B.; Brooks, J.R.; Varney, G.T.; Ehleringer, J.R. Discrimination against C18O16O during photosynthesis and the isotopic ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem. Cycl. 11:83–98; 1997.

    Article  CAS  Google Scholar 

  • Flanagan, L.B.; Comstock, J.P; Ehleringer, J.R. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiol. 96:588–596; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, L.B.; Ehleringer, J.R.; Marshall, J.D. Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ. 15:831–836; 1992.

    Article  Google Scholar 

  • Flanagan, L.B.; Kubien, D.S.; Ehleringer, J.R. Spatial and temporal variation in the carbon and oxygen isotope ratio of respired CO2 in a boreal forest ecosystem. Tellus; in press.

    Google Scholar 

  • Francey, R.J.; Tans, P.P. Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327:495–497; 1987.

    Article  CAS  Google Scholar 

  • Gat, J. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24:225–262; 1996.

    Article  CAS  Google Scholar 

  • Gat, J.R.; Gonfiantini, R., eds. Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle. Vienna: IAEA; 1981.

    Google Scholar 

  • Gat, J.R.; Matsui, E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. J. Geophys. Res. 96:13179–13188; 1991.

    Article  Google Scholar 

  • Gehre, M.; Hoefling, R.; Kowaski, P.; Strauch, G. Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal. Chem. 68:4414–4417; 1996.

    Article  CAS  Google Scholar 

  • Gray, J.; Thompson, P. Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262:481–482; 1976.

    Article  Google Scholar 

  • Hayes, J.M. Practice and principles of isotopic measurements in organic geochemistry. In: Meinschein, W.G., ed. Organic Geochemistry of Contemporaneous and Ancient Sediments. Bloomington, In: Society of Economic Paleontologists and Mineralogists; 1983:5–31.

    Google Scholar 

  • Hsieh, J.C.C.; Chadwick, O.A.; Kelly, E.F.; Savin, S.M. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration. Geoderma 82:269–293; 1998.

    Article  Google Scholar 

  • Hobson, K.A.; Wassenaar, L.I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148; 1997.

    Article  Google Scholar 

  • Hobson, K.A.; Wassenaar, L.I.; Taylor, O.R. Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America. Oecologia 120(3):397–404; 1999.

    Article  Google Scholar 

  • Hoefs, J. Stable Isotope Geochemistry. Heidelberg: Springer-Verlag; 1987.

    Google Scholar 

  • Jackson, P.C.; Cavelier, J.; Goldstein, G.; Meinzer, F.C.; Holbrook, N.M. Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101:197–203; 1995.

    Article  Google Scholar 

  • Kishima, N.; Sakai, H. Oxygen-18 and deterium on a single water sample of a few milligrams. Anal. Chem. 52:356–358; 1980.

    Article  CAS  Google Scholar 

  • Lajtha, K.; Michener, R.H., editors. Stable Isotopes in Ecology and Environmental Science. London: Blackwell; 1994.

    Google Scholar 

  • Lawrence, J.R.; White, J.W.C. Growing season precipitation from D/H ratios of eastern white pine. Nature 311:558–560; 1984.

    Article  Google Scholar 

  • Lea, P.J.; Leegood, R.C. Plant Biochemistry and Plant Molecular Biology. New York: J Wiley; 1993.

    Google Scholar 

  • Leavitt, S.W.; Danzer, S.R. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal. Chem. 65:87–89; 1993.

    Article  CAS  Google Scholar 

  • Leavitt, S.W., Long, A. Seasonal stable-carbon isotope variability in tree rings: Possible paleoenvironmental signals. Chem. Geol. 87:59–70; 1991.

    CAS  Google Scholar 

  • Leavitt, S.W., Long, A. Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010; 1986.

    Article  CAS  Google Scholar 

  • Lin, G., Sternberg, L.d.S.L. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D., eds. Stable Isotopes and Plant Carbon-Water Relations. San Diego, CA: Academic; 1993:497–510.

    Google Scholar 

  • Lipp, J.; Trimborn, P.; Edwards, T.; Waisel, Y.; Lin, D. Climatic effects on the δ18O and δ13C of cellulose in the desert tree Tamarix jordanis. Geochim. Cosmochim. Acta 60:3305–3309; 1996.

    Article  CAS  Google Scholar 

  • Liu, B.; Phillips, F.M.; Campbell, A.R. Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: Implications for paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 124:233–246; 1996.

    Article  Google Scholar 

  • Livingston, N.J., Spittlehouse, D.L. Carbon isotope fractionation in tree rings in relation to the growing season water balance. In: Ehleringer, J.R.; Hall, A.E.; Farquhar, G.D., eds. Stable Isotopes and Plant Carbon-Water Relations. San Diego, CA: Academic; 1993:141–153.

    Google Scholar 

  • Loader, N.J.; Switsur, V.R.; Field, E.M. High resolution stable isotope analysis of tree rings: implications of “microdendroclimatology” for paleoenvironmental research. Holocene 5:457–460; 1995.

    Article  Google Scholar 

  • Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleocli-matological research? Geochim. Cosmochim. Acta 48:385–390; 1984.

    Article  CAS  Google Scholar 

  • Luz, B.; Connie, A.B.; Schwarcz, H.P. Oxygen isotope variations in phosphate of deer bones. Geochim. Cosmochim. Acta 54:1723–1728; 1990.

    Article  Google Scholar 

  • Mazor, E. Stable hydrogen and oxygen isotopes. In: Mazor, E., ed. Applied Chemical and Isotopic Ground-water Hydrology. Buckingham, UK: Open University Press; 1991:pp.122–146.

    Google Scholar 

  • Martinelli, L.A.; Victoria, R.L.; Sternberg, L.S.L.; Ribeiro, A.; Moreira, M.Z. Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J. Hydrol. 183:191–204; 1996.

    Article  CAS  Google Scholar 

  • Mensforth, L.J.; Thorburn, P.J.; Tyerman, S.D.; Walker, G.R. Sources of water used by riparian Eucalptus camaldulensis overlying highly saline groundwater. Oecologia 100:21–28; 1994.

    Article  Google Scholar 

  • Moreira, M.Z.; Sternberg, L.d.S.L.; Martinelli, L.A.; Victoria, R.L.; Barbosa, E.M.; Bonates, L.C.M.; Nepstad, D.C. Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biol. 3:439–450; 1997.

    Article  Google Scholar 

  • Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Systemat. 18:293–320; 1987.

    Article  Google Scholar 

  • Platzner, I.T.; Habfast, K.; Walder, A.J.; Goetz, A. Modern Isotope Ratio Mass Spectrometry. New York: Wiley; 1997.

    Google Scholar 

  • Quade, J.; Cerling, T.E. Expansion of C4 grasses in the Late Miocene of northern Pakistan: Evidence from stable isotopes in paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115:91–116; 1995.

    Article  Google Scholar 

  • Roden, J.S.; Lin, G.; Ehleringer, J.R. A mechanistic model for the interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64:21–35; 2000.

    Article  CAS  Google Scholar 

  • Saurer, M.; Allen, K.; Siegwolf, R. Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ. 20:1543–1550; 1997.

    Article  Google Scholar 

  • Saurer, M.; Robertson, I.; Siegwolf, R.; Leuenberger, M. Oxygen isotope analysis of cellulose: An interlaboratory comparison. Anal. Chem. 70:2074–2080; 1998.

    Article  CAS  Google Scholar 

  • Schwinning, S.; Ehleringer, J.R. The interpretation of D2O pulse experiments in ecological research on desert plants. (in preparation).

    Google Scholar 

  • Scrimgeour, C.M. Measurement of plant and soil water isotope composition by direct equilibration methods. J. Hydrol. 172:261–274; 1995.

    Article  CAS  Google Scholar 

  • Socki, R.A.; Karlsson, H.R.; Gibson, E.K. Extraction technique for the determination of oxygen-18 in water using pre-evacuated glass vials. Anal. Chem. 64:829–831; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, L.d.S.L.; Swart, P.K. Utilization of freshwater and ocean water by coastal plants of southern Florida. Ecology 68:1898–1905; 1987.

    Article  Google Scholar 

  • Sternberg, L.; DeNiro, M.J.; Ajie, H. Stable hydrogen isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3 and C4 plants. Phytochemistry 23:2475–2477; 1984.

    Article  CAS  Google Scholar 

  • Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating. Tucson, AZ: Univ Arizona Pr.; 1996.

    Google Scholar 

  • Switsur, R.; Waterhouse, J. Stable isotopes in tree ring cellulose. In: Griffiths, H., ed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Oxford: BIOS; 1998:303–321.

    Google Scholar 

  • Thorburn, P.J.; Dawson, T.E. Partitioning water source use by plants using isotopic mixing models: a précis.; in preparation.

    Google Scholar 

  • Thorburn, P.J.; Walker, G.R.; Brunei, J.-P. Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: Laboratory and field techniques. Plant Cell Environ. 16:269–277; 1993.

    Article  CAS  Google Scholar 

  • Wershaw, R.L.; Friedman, I.; Heller, S.J. Hydrogen isotope fractionation of water passing through trees. In: Hobson, F.; Speers, M., eds. Advances in Organic Geochemistry. New York: Pergamon; 1966:55–67.

    Google Scholar 

  • White, J.W.C. Stable hydrogen isotope ratios in plants: a review of current theory and some potential applications. In: Rundel, P.W.; Ehleringer, J.R.; Nagy, K.A., eds. Stable Isotopes in Ecological Research. Ecological Studies, Vol. 68. Heidelberg: Springer-Verlag; 1988:142–162.

    Google Scholar 

  • White, J.W.C.; Cook, E.R.; Lawrence, J.R.; Broecker, W.S. The D/H ratio of sap in trees: Implications for water sources and tree ring D/H ratios. Geochim. Cosmochim. Acta 49:237–246; 1985.

    Article  CAS  Google Scholar 

  • White, J.W.C.; Lawrence, J.R.; Broecker, W.S. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in northeastern United States. Geochim. Cosmochim. Acta 58:851–862; 1994.

    Article  CAS  Google Scholar 

  • Wise, L.E. Wood Chemistry. New York: Reinhold; 1944.

    Google Scholar 

  • Wong, W.W.; Lee, L.S.; Klein, P.D. Oxygen isotope ratio measurements on carbon dioxide generated by reaction of microliter quantities of biological fluids with Guanidine Hydrochloride. Anal. Chem. 59:690–693; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Yakir, D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15:1005–1020; 1992.

    Article  CAS  Google Scholar 

  • Yakir, D.; DeNiro, M.J.; Rundel, P.W. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transduced by plants. Geochim. Cosmochim. Acta 53:2769–2773; 1989.

    Article  Google Scholar 

  • Yapp, C.J.; Epstein, S. A reexamination of cellulose carbon-bound hydrogen δD measurements and some factors affecting plant-water D/H relationships. Geochim. Cosmochim. Acta 46:955–965; 1982.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehleringer, J.R., Roden, J., Dawson, T.E. (2000). Assessing Ecosystem-Level Water Relations Through Stable Isotope Ratio Analyses. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics