Skip to main content

Decimated Amplitude Equations in Turbulence Dynamics

  • Chapter
Theoretical Approaches to Turbulence

Part of the book series: Applied Mathematical Sciences ((AMS,volume 58))

Abstract

A scheme of decimation, or statistical interpolation, is developed for stochastic systems which exhibit dynamical and statistical symmetries among groups of modes. The end product is generalized Langevin equations for a sample set of explicitly followed modes. All the other modes are represented by the random forcing amplitudes in the Langevin equations. The random forcing is constrained by realizability inequalities and by appeal to the statistical symmetries. The latter yield expressions for moments of the joint probability distribution of forcing amplitudes and sample-set amplitudes in terms of moments of the sample-set amplitudes alone. This permits integration of the dynamical equations for an ensemble of sample-set amplitudes. Converging approximation sequences may be generated by systematically enlarging the set of constraints.

The decimation scheme (DS) bridges among several kinds of attack on the turbulence problem: moment hierarchy equations, renormalized perturbation theory (RPT), renormalization group methods, and direct modeling of large systems by systems with fewer modes. The DS does not appeal to perturbation theory, but in the limit of strong decimation it can be analyzed perturbatively. The direct-interaction approximation and other RPT approximations may thereby be obtained from appropriate moment constraints. One feature of the DS is that invariance to random Galilean transformation, a severe problem in the RPT treatment of turbulence, can be directly assured by constraints which relate 3rd-and 4th-order moments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.Van Dyke, An Album of Fluid Motion (Parabolic, Stanford, 1982), Chs. 5 & 6.

    Google Scholar 

  2. H. S. Wall, Analytical Theory of Continued Fractions (Chelsea, New York, 1967), p. 330.

    Google Scholar 

  3. R. H. Kraichnan, Adv. Math. 16, 305 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. H. Kraichnan, J. Math. Phys. 2, 124 (1961); 3, 205 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. H. Kraichnan, J. Fluid Mech. 41, 189 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. C. Lanczos, Applied Analysis (Prentice Hall, Englewood Cliffs, New Jersey, 1956), p. 376.

    Google Scholar 

  7. R. H. Kraichnan, Phys. Rev. Lett. 42, 1263 (1979).

    Article  ADS  Google Scholar 

  8. G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge, England, 1967), p. 56.

    Google Scholar 

  9. R. H. Kraichnan, in Nonlinear Dynamics, edited by H.G. Heileman (New York Academy of Sciences, New York, 1980), p. 37.

    Google Scholar 

  10. Hut not always. For example, the two constraints ‹x› = 1, ‹x2› = 1 force x = 1 in all realizations for any finite R.

    Google Scholar 

  11. An example of realization of a velocity field with prescribed covariance is given by R. H. Kraichnan, Phys. Fluids 13, 22 (1970).

    Google Scholar 

  12. R.H. Kraichnan, J. Fluid Mech. 83, 349 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C.E. Leith, J. Atoros. Sci. 28, 145 (1971).

    Article  ADS  Google Scholar 

  14. R.H. Kraichnan, Phys. Fluids 11, 1723 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. P.C. Martin, E. D. Siggia & H. A. Rose, Phys. Rev. A 8, 423 (1973).

    ADS  Google Scholar 

  16. R. Phythian, J. Phys. A 8, 1423 (1975); 9, 269 (1976).

    MathSciNet  ADS  Google Scholar 

  17. S. A. Orszag & R. H. Kraichnan, Phys. Fluids 10, 1720 (1967).

    Article  ADS  MATH  Google Scholar 

  18. J. R. Herring & R. H. Kraichnan, in Statistical Models and Turbulence, edited by M. Rosenblatt and C. Van Atta(Springer-Verlag, New York, 1972)

    Google Scholar 

  19. R. H. Kraichnan in The Padé Approximant in Theoretical Physics, edited by G. A. Baker, Jr. and J. L. Gammel (Academic Press, New York, 1970), Ch. 4, Sec. V. The P defined in this ref. is n in the present notation.

    Google Scholar 

  20. In the notation of Ref. 4, Schwarz inequalities show that, if C2;1 = 1 and C4;3 = 1, then infinite classes of cycles not reducible to these cycles by vertex contraction also have the value unity. In particular, the cycles represented by the diagrams of Ref. 4, Fig. 8(c) have this value.

    Google Scholar 

  21. H. A. Rose, private communication.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kraichnan, R.H. (1985). Decimated Amplitude Equations in Turbulence Dynamics. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds) Theoretical Approaches to Turbulence. Applied Mathematical Sciences, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1092-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1092-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96191-0

  • Online ISBN: 978-1-4612-1092-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics