Skip to main content

Neurotransmitters and Synaptic Transmission

  • Chapter
The Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

The hair cell transmits information about an acoustic signal by releasing a neurotransmitter to excite afferent nerve fibers. This results in discharge of the auditory nerve. The release of neurotransmitter by the hair cell is triggered by the entry of calcium into the hair cell through voltage-dependent calcium (Vca) channels. Even in the absence of acoustic stimulation, the small resting current entering through the transduction channels in the stereocilia always slightly depolarizes the hair cell. Because of this slight depolarization, the Vca current is always activated. Thus, transmitter is always being released, and the auditory nerve fiber is generally always firing. Further depolarization of the hair cell, for example by acoustic stimulation, increases the probability that transmitter will be released. In contrast, hyperpolarization of the hair cell, as during some phases of an acoustic stimulus, decreases the probability of transmitter release. Thus to a first approximation, the release of transmitter from the hair cell reflects the membrane potential of the hair cell and determines the rate of discharge in the auditory nerve fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Madi L, Pontarotti P, Tramu G, Cupo A, Eybalin M (1987) Coexistence of putative neuroactive substances in lateral olivocochlear neurons of rat and guinea pig. Hear Res 30:135–146.

    PubMed  CAS  Google Scholar 

  • Adams JC, Mruz EZ, Sewell WF (1987) A possible neuroransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419:347–351.

    PubMed  CAS  Google Scholar 

  • Allen CN, Braky R, Swann J, Hori N, Carpenter DO (1988) N-Methyl-n-aspartate (NMDA) receptors are inactivated by trypsin. Brain Res 458:147–150.

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Hoffman DW, Reeks KA, Fex J (1984) Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hear Res 16:249–258.

    Google Scholar 

  • Annoni JM, Cochran SL, Precht W (1984) Pharmacology of vestibular hair cells in the frog. J Neurosci 4:2106–2116.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1982) Efferent regulation of hair cells in the turtle cochlea. Proc R Soc London B 216:377–384.

    CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    PubMed  CAS  Google Scholar 

  • Bledsoe SC, Chihal DM, Bobbin RP, Morgan DN (1983) Comparative actions of glutamate and related substances on the lateral line organ of Xenopus laevis. Comp Biochem Physiol 75C:119–206.

    Google Scholar 

  • Bobbin RP, Konishi T (1974) Action of cholinergic and anticholinergic drugs at the cross olivocochlear bundle-hair cell junction. Acta Otolaryngol 77:56–65.

    PubMed  CAS  Google Scholar 

  • Bobbin RP, Bledsoe SCJ, Winbery S, Ceasar G, Jenison GL (1985) Comparative actions of GABA and acetylcholine on the Xenopus laevis lateral line. Comp Biochem Physiol 80C:313–318.

    CAS  Google Scholar 

  • Bledsoe SCJ, Bobbin RP, Puel JL (1988) Neurotransmission in the inner ear. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 385–406.

    Google Scholar 

  • Bobbin RP, Ceasar G, Fallon M (1990) Potassium induced release of GABA and other substances from the guinea pig cochlea. Hear Res 46:83–94.

    PubMed  CAS  Google Scholar 

  • Bobbin RP, Fallon M, Puel JL, Bryant G, Bledsoe SC Jr, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52.

    PubMed  CAS  Google Scholar 

  • Boulter J, Hollman M, Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249:1033–1037.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL, Masta RI (1983) Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents. Science 222:69–72.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical response of isolated cochlear outer hair cells. Science 277:194–196.

    Google Scholar 

  • Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210.

    Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol (London) 306:79–125.

    CAS  Google Scholar 

  • Devau G, Lehouelleur J, Sans A (1993) Glutamate receptors on type 1 vestibular hair cells of the guinea pig. Eur J Neurosci 5:1210–1217.

    PubMed  CAS  Google Scholar 

  • Docherty M, Bradford HF, Wu J-Y (1987) Co-release of glutamate and aspartate from cholinergic and GABAergic synaptosomes. Nature 330:64–66.

    PubMed  CAS  Google Scholar 

  • Doi K, Weinthold RJ, Takahashi Y, Matsunaga T (1993) DNA amplifications of ionotrophic/metabotrophic glutamate receptors and acetylcholine receptors in the rat cochlea. ARO Abstracts 16:92.

    Google Scholar 

  • Drescher MJ, Drescher DG (1992) Glutamate, of the endogenous primary alpha-amino acids, is specifically released from hair cells by elevated extracellular potassium. J Neurochem 59:93–98.

    PubMed  CAS  Google Scholar 

  • Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41:309–320.

    PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715.

    PubMed  CAS  Google Scholar 

  • Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinergic receptor on guinea pig outer hair cells. Hear Res 74:135–147.

    PubMed  CAS  Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Pujol R, Bockaert J (1987) Opioid receptors inhibit the adenylate cyclase in guinea pig cochleas. Brain Res 421:336–342.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Rebillard G, Jarry T, Cupo A (1987) Effect of noise level on Met-enkephalin content of the guinea pig cochlea. Brain Res 418:189–192.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea pig organ of Corti. Neuroscience 24:29–38.

    PubMed  CAS  Google Scholar 

  • Felix D, Ehrenberger K (1982) The action of putative neurotransmitter substances in the cat labyrinth. Acta Otolaryngol 93:311–314.

    Google Scholar 

  • Fex J, Adams J (1978) Alpha-bungarotoxin blocks reversibly cholinergic inhibition in the cochlea. Brain Res 159:440–444.

    PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivo-cochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci USA 78:1255–1259.

    PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA (1984) Glutamic acid decarboxylase immunoreactvity of olivocochlear neurons in the organ of Corti of guinea pig and rat. Hear Res 15:123–131.

    PubMed  CAS  Google Scholar 

  • Flock A, Russell I (1976) Inhibition by efferent nerve fibers: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot, Lota Iota. J Physiol 257:45–62.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Furukawa T (1985) Mode of operation of afferent synapses between hair cells and auditory fibers. In: Drescher DG (ed) Auditory Biochemistry. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Furukawa T (1986) Sound reception and synaptic transmission in goldfish hair cells. Jpn J Physiol 36:1059–1077.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on heaing in goldfish. J Neurophysiol 30:1377–1403.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Matsuura S (1978) Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eighth nerve fibers in the goldfish. J Physiol 276:193–209.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii Y, Matsuura S (1972) Synaptic delay and time course of postsynaptic potentials at the junction between hair cells and eighth nerve fibers in the goldfish. Jpn J Physiol 22:617–635.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Hayashida Y, Matsuura S (1978) Quantal analysis of the size of excitatory post-synaptic potentials at synapses between hair cells and afferent nerve fibers in goldfish. J Physiol 276:211–226.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Kuno M, Katsuura S (1982) Quantal analysis of a decremental response at hair cell-afferent fibre synapses in the goldfish sacculus. J Physiol 322:181–195.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Le S, Schwid H (1979) Further studies on the Schroeder-Hall hair-cell model. J Acoust Soc Am 65:985–990.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan JJ (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194.

    PubMed  CAS  Google Scholar 

  • Gleich O, Johnstone BM, Robertson D (1990) Effects of 1-glutamate on auditory afferent activity in view of its proposed excitatory transmitter role in the mammalian cochlea. Hear Res 45:295–312.

    PubMed  CAS  Google Scholar 

  • Gregor P, Mano I, Maoz I, McKeown M, Teichberg VI (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342:689–692.

    PubMed  CAS  Google Scholar 

  • Guinan JJ, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221:358–370.

    PubMed  Google Scholar 

  • Guth PS, Norris CH, Bobbin RP (1976) The pharmacology of transmission in the peripheral auditory systems. Pharmacol Rev 28:95–125.

    PubMed  CAS  Google Scholar 

  • Guth P, Norris C, Fermin CD, Pantoja M (1993) The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal. Hear Res 66:143–149.

    PubMed  CAS  Google Scholar 

  • Henley JM, Ambrosini A, Rodriguez-Ithurralde D, Sudan H, Brackley P, Kerry C, Mellor I, Abutidze K, Usherwood PNR, Barnard EA (1992) Purified unitary kainate/α-amino-3-hydroxy-5-methylisooxazole propionate (AMPA) and kainate/ AMPA/N-methyl-D-aspartate receptors with interchangeable subunits. Proc Natl Acad Sci USA 89:4806–4810.

    PubMed  CAS  Google Scholar 

  • Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8:775–785.

    PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384.

    PubMed  CAS  Google Scholar 

  • Honore T, Davies SM, Drejer J, Fletcher EJ, Jobobsen P, Lodge D, Nielsen FE (1988) Qunioxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond B 244:161–167.

    CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bull-frog Rana catesbieana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of densensitization by Con A. Neuron 5:255–266.

    PubMed  CAS  Google Scholar 

  • Ishii Y, Matsuura S, Furukawa T (1971) Quantal nature of transmission at the synapse between hair cells and VIII nerve fibers. Jpn J Physiol 21:79–89.

    PubMed  CAS  Google Scholar 

  • Jepson P (1969) Studies of the structure and function of taste buds. Acta Otolaryngol 55:1–32.

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    PubMed  CAS  Google Scholar 

  • Kakehata S, Nakagawa T, Takasaka T, Akaike N (1993) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea pig cochlea. J Physiol 463:227–244.

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1967) A study of synaptic transmission in the absence of nerve impulses. J Physiol 192:407–436.

    PubMed  CAS  Google Scholar 

  • Kehoe J (1972) Three acetylcholine receptors in Aplysia neurones. J Physiol 225:115–146.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kiang NY-S, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217:175–177.

    PubMed  CAS  Google Scholar 

  • Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181–208.

    PubMed  CAS  Google Scholar 

  • Kirk DL, Johnstone BM (1993) Modulation of f241: evidence for a GABA-ergic efferent system in apical cochlea of the guinea pig. Hear Res 67:20–34.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1993) Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms. Hear Res 68:97–106.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion otoacoustic emissions by contralateral sound. Hear Res 74:122–134.

    PubMed  CAS  Google Scholar 

  • Kuno M (1983) Adaptive changes in firing rates in goldfish auditory fibers as related to changes in mean amplitude of excitatory postsynaptic potentials. J Neurophysiol 50:573–581.

    PubMed  CAS  Google Scholar 

  • Kuriyana H, Albin RL, Altschuler RA (1993) Expression of NMDA receptor messenger RNA in the rat cochlea. Hear Res 69:215–220.

    Google Scholar 

  • Kyogoku I, Matsuura S, Kuno M (1986) Generator potentials and spike initiation in auditory fibers of goldfish. J Neurophysiol 55:244–255.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176.

    PubMed  CAS  Google Scholar 

  • Littman T, Bobbin RP, Fallon M, Puel J-L (1989) The quinoxalinediones DNQX and CNQX and two related congeners suppress hair cell-to-auditory nerve transmission. Hear Res 40:45–54.

    PubMed  CAS  Google Scholar 

  • Lu SM, Schweitzer L, Cant NB, Dawbarn D (1987) Immunoreactivity to calcitonin gene-related peptide in the superior olivary complex and cochlea of cat and rat. Hear Res 31:137–146.

    PubMed  CAS  Google Scholar 

  • Monaghan P (1975) Ultrastructural and pharmacological studies of the afferent synapse of lateral-line sensory cells of the African clawed toad, Xenopus laevis. Cell Tissue Res 163:239–247.

    PubMed  CAS  Google Scholar 

  • Mroz EA, Sewell WF (1989) Pharmacological alterations of the activity of afferent fibers innervating hair cells. Hear Res 38:141–162.

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Komune S, Uemura T, Akaike N (1991) Excitatory amino acid response in isolated spiral ganglion cells of guinea pig cochlea. J Neurophysiol 65:715–723.

    PubMed  CAS  Google Scholar 

  • Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 15:2338–2353.

    PubMed  CAS  Google Scholar 

  • Norris CH, Guth PH, Daigneault EA (1977) The site at which peripheral auditory adaptation occurs. Brain Res 123:174–179.

    Google Scholar 

  • Oesterle EC, Dallos P (1990) Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials. J Neurophysiol 64:617–636.

    PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulfur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76.

    PubMed  CAS  Google Scholar 

  • Osborne MP, Thornhill RA (1972) The effects of monoamine depleting drugs upon the synaptic bars in the inner ear of the bullfrog, Rana catesbieana. Z Zellforsch 127:347–355.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15.

    PubMed  CAS  Google Scholar 

  • Plinkert PK, Zenner HP, Heilbronn E (1991) A nicotinic acetylcholine receptor-like α-bungarotoxin binding site on outer hair cells. Hear Res 53:123–130.

    PubMed  CAS  Google Scholar 

  • Pujol R, Lenour M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18:145–151.

    PubMed  CAS  Google Scholar 

  • Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186.

    PubMed  CAS  Google Scholar 

  • Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684.

    PubMed  CAS  Google Scholar 

  • Rossi ML, Valli P, Casella C (1977) Post-synaptic potentials recorded from afferent nerve fibers of the posterior semicircular canal in the frog. Brain Res 135:67–75.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1971) The pharmacology of efferent synapses in the lateral-line system of Xenopus laevis. J Exp Biol 54:643–658.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Brumm D, Kraft M (1991) Occurrence and distribution of non-NMDA glutamate receptor mRNAs in the cochlea. Neuroreport 2:643–646.

    PubMed  CAS  Google Scholar 

  • Safieddine S, Eybalin M (1992) Co-expression of NMDA and AMPA/kainite receptor mRNAs in cochlear neurones. Neuroreport 3:1145–1148.

    PubMed  CAS  Google Scholar 

  • Sahley TL, Musiek FE, Hoffman DW (1991) Opiate modulation of N1 and N2 amplitudes in the chinchilla. ARO Abstr 14:132.

    Google Scholar 

  • Sand O (1975) Effects of different ionic environments on mechanosensitivity of lateral line organs in the mudpuppy. J Comp Physiol 102:27–42.

    CAS  Google Scholar 

  • Schroeder MR, Hall JL (1974) Model for mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 55:1055–1060.

    PubMed  CAS  Google Scholar 

  • Schwid HA, Geisler CD (1982) Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell. J Acoust Soc Am 72:1435–1440.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Russell IJ (1980) The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea. Hear Res 2:439–446.

    PubMed  CAS  Google Scholar 

  • Sento S, Furukawa T (1987) Intra-axonal labeling of saccular afferents in the goldfish, Carassius auratus: correlations between morphological and physiological characteristics. J Comp Neurol 258:352–367.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibers of the cat. J Physiol 347:685–696.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1990) Synaptic potentials in afferent fibers innervating hair cells of the lateral line organ of Xenopus laevis. Hear Res 44:71–82.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1993) Pharmacology of glutamate receptors on afferent fibers innervating hair cells in Xenopus laevis: effects of synaptic potentials. ARO Abstr 16:33.

    Google Scholar 

  • Sewell WF, Mroz EA (1987) Neuroactive substances in inner ear extracts. J Neurosci 17:2465–2475.

    Google Scholar 

  • Sewell WF, Starr PA (1991) Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J Neurophysiol 65:1158–1169.

    PubMed  CAS  Google Scholar 

  • Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracel-lular Ca++ concentration in chick cochlear hair cells. J Physiol 420:127–148.

    PubMed  CAS  Google Scholar 

  • Siegel JH, Brownell WE (1986) Synaptic and Golgi membrane recycling in cochlear hair cells. J Neurocytol 15:311–328.

    PubMed  CAS  Google Scholar 

  • Siegel J, Dallos P (1986) Spike activity recorded from the organ of Corti. Hear Res 22:245–248.

    PubMed  CAS  Google Scholar 

  • Sjostrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig as revealed by three dimensional reconstruction from serial sections. J Ultrastruc Res 2:122.

    CAS  Google Scholar 

  • Spoendlin H (1966) The organization of the cochlear receptor. Adv Otorhinolaryngol 13:1–227.

    CAS  Google Scholar 

  • Sridhar TS, Brown MC, Liberman MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678.

    PubMed  CAS  Google Scholar 

  • Starr PA, Sewell WF (1991) Neurotransmitter release from hair cells in its blockade by glutamate-receptor antagonists. Hear Res 52:23–42.

    PubMed  CAS  Google Scholar 

  • Suzue T, Wu G-B, Furukawa T (1987) High susceptibility to hypoxia of afferent synaptic transmission in the goldfish sacculus. J Neurophysiol 58:1066–1079.

    PubMed  CAS  Google Scholar 

  • Sziklai I, Dallos P (1993a) Acetylcholine controls the gain of the voltage-to-movement converter in isolated outer hair cells. Acta Otolaryngol 113:326–329.

    PubMed  CAS  Google Scholar 

  • Sziklai L, Dallos P (1993b) Effect of acetylcholine and GABA on the transfer function of electromotility in isolated OHCs. ARO Abstr 16:83.

    Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.

    PubMed  CAS  Google Scholar 

  • Umekita S, Matsumoto Y, Abe T, Obara S (1980) The afferent neurotransmitter in the ampullary electroreceptors: stimulus-dependent release experiments refute the transmitter role of 1-glutamate. Neurosci Lett Suppl 4:S7.

    Google Scholar 

  • Valli P, Zucca G, Prigioni L, Botta L, Casella C, Guth PS (1985) The effect of glutamate on the frog semicircular canal. Brain Res 330:1–9.

    PubMed  CAS  Google Scholar 

  • Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43.

    PubMed  CAS  Google Scholar 

  • Wada K, Deschesne C, Shimasaki S, King RG, Kisano K, Buonanno A, Hampson DR, Banner C, Wenthold RJ, Nakatani Y (1989) Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342:684–689.

    PubMed  CAS  Google Scholar 

  • Walsh BT, Miller JB, Gacek RR, Kiang NY-S (1972) Spontaneous activity in the eighth cranial nerve of the cat. Int J Neurosci 3:221–236.

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272.

    CAS  Google Scholar 

  • Weiss TF, Rose C (1898) Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard. Hear Res 33:167–174.

    Google Scholar 

  • Werman R (1966) Criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18:745–766.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260.

    PubMed  CAS  Google Scholar 

  • Wiederhold ML, Kiang NY-S (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965.

    PubMed  CAS  Google Scholar 

  • Wurtman RD, Axelrod JDK (1968) The Pineal. London, New York: Academic Press.

    Google Scholar 

  • Yamaguchi K, Ohmori H (1990) Voltage-gated and chemically gated ionic channels inthe cultured cochlear ganglion neurone of the chick. J Physiol 420:185–206.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sewell, W.F. (1996). Neurotransmitters and Synaptic Transmission. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics