Skip to main content

Outer Hair Cell Motility

  • Chapter
The Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

Outer hair cells (OHCs) are extremely versatile mechanical components of the cochlea. Sitting above the basilar membrane, they appear able to perceive its vibration through their mechanosensitive hair bundles and to feed back mechanical forces that enhance both its sensitivity and its frequency selectivity. They also receive an efferent nerve supply that may be used to modulate this response, and they may receive additional information from mechanoreceptive elements in their basolateral membrane. During the last 10 years they have been the subject of many experiments designed to discover just exactly how they generate mechanical forces and how these forces contribute to the micromechanics of the cochlea. If all the proposed mechanisms actually occur in vivo, then OHCs can boast a remarkable behavioral repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989a) Molecular Biology of the Cell. 2nd ed. Chapter 11: The cytoskeleton. New York and London: Garland Publishing.

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989b) Biology of the Cell. 2nd ed. New York and London: Garland Publishing, p. 88.

    Google Scholar 

  • Amos LA, Amos BA (1991) Molecules of the Cytoskeleton. London: Macmillan Education Ltd, p. 69.

    Google Scholar 

  • Angelborg C, Engstrom H (1973) The normal organ of Corti. In: Moller AR (ed) Basic Mechanisms of Hearing. New York: Academic Press.

    Google Scholar 

  • Arima T, Kuraoka A, Toriya R, Shibata Y, Uemura T (1991) Quick-freeze, deep-etch visualisation of the “cytoskeletal spring” of cochlear outer hair cells. Cell Tissue Res 263:91–97.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1990) Forward and reverse transduction in the mammalian cochlea. Neurosci Res Suppl. 12:S39–S50.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1992) Mammalian hearing and the cellular mechanisms of the cochlear amplifier. In: Corey DP, Roper SD (eds) Sensory Transduction. New York: Rockefeller University Press, pp. 396–412.

    Google Scholar 

  • Ashmore JF, Holley MC (1988) Temperature dependence of a fast motile response in isolated outer hair cells of the guinea pig cochlea. Q J Exp Physiol 73:143–145.

    PubMed  CAS  Google Scholar 

  • Bannister LH, Dodson HC, Astbury AF, Douek EE (1988) The cortical lattice: a highly ordered system of subsurface filaments in guinea pig outer hair cells. Prog Brain Res 74:213–219.

    PubMed  CAS  Google Scholar 

  • Beyer EC (1993) Gap junctions. Int Rev Cytol 137c:1–37.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Brundin L, Russell I (1993) Sound-induced movements and frequency tuning in outer hair cells isolated from the guinea pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 182–191.

    Google Scholar 

  • Brundin L, Flock A, Canlon B (1989) Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Nature 342:814–816.

    PubMed  CAS  Google Scholar 

  • Brundin L, Wiklund NP, Gustafsson LE, Flock A (1992) Functional and morphological comparisons between cochlear outer hair cells and muscle tissue in the guinea pig. Acta Physiol Scand 144:379–386.

    PubMed  CAS  Google Scholar 

  • Byers TJ, Branton D (1985) Visualisation of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci USA 82:6153–6157.

    PubMed  CAS  Google Scholar 

  • Canlon B, Brundin L (1991) Mechanically induced length changes of isolated outer hair cells are metabolically dependent. Hear Res 53:7–16.

    PubMed  CAS  Google Scholar 

  • Canlon B, Dulon D (1993) Dissociation between the calcium-induced and voltage-driven motility in cochlear outer hair cells from the waltzing guinea pig. J Cell Sci 104:1137–1143.

    PubMed  Google Scholar 

  • Canlon B, Brundin L, Flock Å (1988) Acoustic stimulation causes tonotropic alterations in the length of isolated outer hair cells from the guinea pig hearing organ. Proc Natl Acad Sci USA 85:7033–7035.

    PubMed  CAS  Google Scholar 

  • Cohen S, Barchi RL (1993) Voltage-dependent sodium channels. Int Rev Cytol 137c:55–103.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157.

    PubMed  CAS  Google Scholar 

  • Dallos P, Hallworth R, Evans BN (1993) Theory of electrically-driven shape changes of cochlear outer hair cells. J Neurophysiol 70:299–323.

    PubMed  CAS  Google Scholar 

  • Decory L, Hiel H, Aran J-M (1991) In vivo noise exposure alters the in vitro motility and viability of outer hair cells. Hear Res 52:81–88.

    PubMed  CAS  Google Scholar 

  • Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653.

    PubMed  CAS  Google Scholar 

  • Ding JP, Salvi RJ, Sachs F (1991) Stretch-activated ion channels in guinea pig outer hair cells. Hear Res 56:19–28.

    PubMed  CAS  Google Scholar 

  • Dulon D, Aran JM, Schacht J (1987) Osmotically-induced motility of outer hair cells: implications for Menière’s disease. Arch Otorhinolaryngol 244:104–107.

    PubMed  CAS  Google Scholar 

  • Dulon D, Aran JM, Schacht J (1988) Potassium-depolarisation induces motility in isolated outer hair cells by an osmotic mechanism. Hear Res 32:123–130.

    PubMed  CAS  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1990) Increasing intracellular free calcium induces circumferential contractions in isolated cochlear outer hair cells. J Neurosci 10:1388–1397.

    PubMed  CAS  Google Scholar 

  • Egelman EH (1994) The ghost of ribbons past. Curr Biol 4:79–81.

    PubMed  CAS  Google Scholar 

  • Evans BN (1990) Fatal contractions: ultrastructural and electromechanical changes in outer hair cells following transmembranous electrical stimulation. Hear Res 45:265–282.

    PubMed  CAS  Google Scholar 

  • Evans BN, Dallos P (1993) Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc Natl Acad Sci USA 90:8347–8351.

    PubMed  CAS  Google Scholar 

  • Evans BN, Hallworth R, Dallos P (1991) Outer hair cell electromotility: the sensitivity and vulnerability of the DC component. Hear Res 52:288–304.

    PubMed  CAS  Google Scholar 

  • Flock Å, Flock B, Ulfendahl M (1986) Mechanisms of movement in outer hair cells and a possible structural basis. Arch Otorhinolaryngol 243:83–90.

    PubMed  CAS  Google Scholar 

  • Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483.

    PubMed  CAS  Google Scholar 

  • Forge A, Zajic G, Li L, Nevill G, Schacht J (1993) Structural variability of the sub-surface cisternae in intact, isolated outer hair cells shown by fluorescent labelling of intracellular membranes and freeze-fracture. Hear Res 64:175–183.

    PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM (1990) Comparative ultrastructure of subsurface cisternae in inner and outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol 247:12–15.

    PubMed  CAS  Google Scholar 

  • Gale JE, Ashmore JF (1994) Charge displacement induced by rapid stretch in the basolateral membrane of the guinea pig outer hair cell. Proc R Soc Lond B 255:243–249.

    CAS  Google Scholar 

  • Gillespie PG, Hudspeth AJ (1993) Adenine nucleotide diphosphates block adaptation of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 90:2710–2714.

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120kD hair-bundle myosin located near stereociliary tips. Neuron 11:581–594.

    PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Brownell WE (1988) Wheat germ agglutinin and Helix pomatia agglutinin lectin binding on cochlear hair cells. Hear Res 34:149–156.

    PubMed  CAS  Google Scholar 

  • Gulley RL, Reese TS (1976) Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 5:479–507.

    PubMed  CAS  Google Scholar 

  • Gulley RL, Reese TS (1977) Regional specialisation of the hair cell plasmalemma in the organ of Corti. Anat Rec 189:109–124.

    PubMed  CAS  Google Scholar 

  • Harding GW, Baggot PJ, Bohne BA (1992) Height changes in the organ of Corti after noise exposure. Hear Res 63:26–36.

    PubMed  CAS  Google Scholar 

  • Holley MC (1991) High frequency force generation in outer hair cells from the mammalian ear. Bioessays 13:1–6.

    Google Scholar 

  • Holley MC, Ashmore JF (1988a) On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc R Soc Lond B 232:413–429.

    PubMed  CAS  Google Scholar 

  • Holley MC, Ashmore JF (1988b) A cytoskeletal spring in cochlear outer hair cells. Nature 335:635–637.

    PubMed  CAS  Google Scholar 

  • Holley MC, Ashmore JF (1990) Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci 96:283–291.

    PubMed  CAS  Google Scholar 

  • Holley MC, Richardson GP (1994) Monoclonal antibodies specific for endoplasmic membranes of mammalian cochlear outer hair cells. J Neurocytol 23:87–96.

    PubMed  CAS  Google Scholar 

  • Holley MC, Kalinec F, Kachar B (1992) Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 102:569–580.

    PubMed  Google Scholar 

  • Huang G, Santos-Sacchi J (1993) Mapping the distribution of the outer hair cell motility voltage sensor by electrical amputation. Biophys J 65:2228–2236.

    PubMed  CAS  Google Scholar 

  • Ide C, Hayashi S (1987) Specialisations of plasma membranes in Pacinian corpus-cles: implications for mechano-electrical transduction. J Neurocytol 16:759–773.

    PubMed  CAS  Google Scholar 

  • Iwasa KH (1993) Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J 65:492–498.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Chadwick RS (1992) Elasticity and active force generation of cochlear outer hair cells. J Acoust Soc Am 92:3169–3173.

    PubMed  CAS  Google Scholar 

  • Iwasa KH, Minxu L, Jia M, Kachar B (1991) Stretch sensitivity of the lateral wall of the auditory outer hair cell from the guinea pig. Neurosci Lett 133:171–174.

    PubMed  CAS  Google Scholar 

  • Jen DH, Steele CR (1987) Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am 82:1667–1678.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Patuzzi R, Yates GK (1986) Basilar membrane measurements and the travelling wave. Hear Res 22:147–153.

    PubMed  CAS  Google Scholar 

  • Kachar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Holley MC, Iwasa K, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675.

    PubMed  CAS  Google Scholar 

  • Kalinec F, Jaeger RG, Kachar B (1993) Mechanical coupling of the outer hair cell plasma membrane to the cortical cytoskeleton by anion exchanger and 4.1 proteins. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 175–181.

    Google Scholar 

  • Kimitsuka T, Ohmori H (1992) The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. J Physiol 458:27–40.

    Google Scholar 

  • Kimura R (1975) The ultrastructure of the organ of Corti. Int Rev Cytol 42:173–222.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Rusch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured mouse cochlea. Proc R Soc Lond B 249:185–193.

    CAS  Google Scholar 

  • Lee C, Chen LB (1988) Dynamic behaviour of endoplasmic reticulum in living cells. Cell 54:37–46.

    PubMed  CAS  Google Scholar 

  • Liman ER, Hess P, Weaver FW, Koren G (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353:752–756.

    PubMed  CAS  Google Scholar 

  • Low PS, Westfall MA, Allen DP, Appell KC (1984) Characterisation of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem 259:13070–13076.

    PubMed  CAS  Google Scholar 

  • Mammano F, Ashmore JF (1993) Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365:838–841.

    PubMed  CAS  Google Scholar 

  • McCleskey EW, Womack MD, Fieber LA (1993) Structural properties of voltage-dependent calcium channels. Int Rev Cytol 137c:39–54.

    Google Scholar 

  • McGough AM, Josephs R (1990) On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc Natl Acad Sci USA 87:5208–5212.

    Google Scholar 

  • Nishida Y, Fujimotor T, Takagi A, Honjo I, Ogawa K (1993) Fodrin is a constituent of the cortical lattice in outer hair cells of the guinea pig cochlea: immunocytochemical evidence. Hear Res 65:274–280.

    PubMed  CAS  Google Scholar 

  • Nuttall AL, Dolan DF (1993) Basilar membrane velocity responses to acoustic and intracochlear electrical stimuli. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 288–295.

    Google Scholar 

  • Orlova A, Egelman EH (1993) A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol 232:334–341.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Wroblewski R (1986) Linkage of sub-membrane-cisterns with the cytoskeleton and the plasma membrane in cochlear outer hair cells. J Submicrosc Cytol 18:731–737.

    PubMed  CAS  Google Scholar 

  • Rusch A, Thurm U (1990) Spontaneous and electrically induced movements of ampullary kinocilia and stereovilli. Hear Res 48:247–264.

    PubMed  CAS  Google Scholar 

  • Saito K (1983) Fine structure of the sensory epithelium of guinea pig organ of Corti: subsurface cisternae and lamellar bodies in the outer hair cells. Cell Tissue Res 229:467–481.

    PubMed  CAS  Google Scholar 

  • Santi PA, Anderson CB (1987) A newly identified surface coat on cochlear hair cells. Hear Res 27:47–65.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1989) Asymmetry in voltage-dependent movements of isolated hair cells from the organ of Corti. J Neurosci 9:2954–2962.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of outer hair cells. Hear Res 35:143–150.

    PubMed  CAS  Google Scholar 

  • Schulte BA (1993) Immunohistochemical localisation of intracellular Ca-ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear Res 65:262–273.

    PubMed  CAS  Google Scholar 

  • Shen BW, Josephs R, Steck TL (1986) Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol 102:997–1006.

    PubMed  CAS  Google Scholar 

  • Shepherd GMG, Corey DP (1994) The extent of adaptation in bullfrog saccular hair cells. J Neurosci 14:6217–6229.

    PubMed  CAS  Google Scholar 

  • Shepherd GMG, Corey DP, Block SM (1990) Actin cores of hair-cell stereocilia support myosin motility. Proc Natl Acad Sci USA 87:8627–8631.

    PubMed  CAS  Google Scholar 

  • Slepecky N, Chamberlain SC (1983) Distribution and polarity of actin in inner ear supporting cells. Hear Res 10:359–370.

    PubMed  CAS  Google Scholar 

  • Slepecky NB, Ulfendahl M (1993) Evidence for calcium-binding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 70:73–84.

    PubMed  CAS  Google Scholar 

  • Slepecky N, Ulfendahl M, Flock Å (1988) Effects of caffeine and tetracaine on outer hair cell shortening suggest intracellular calcium involvement. Hear Res 32:11–22.

    PubMed  CAS  Google Scholar 

  • Speicher DW (1986) The present status of erythrocyte spectrin structure: the 106-residue repetitive structure is a basic feature of an entire class of proteins. J Cell Biochem 30:245–258.

    PubMed  CAS  Google Scholar 

  • Steck TL (1974) The organisation of proteins in the human red blood cell membrane. J Cell Biol 62:1–19.

    PubMed  CAS  Google Scholar 

  • Steele CR, Baker G, Tolomeo J, Zetes D (1993) Electro-mechanical models of the outer hair cell. In: Duifuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 207–215.

    Google Scholar 

  • Sternberg B, L’Hostis C, Whiteway CA, Watts A (1992) The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta 1108:21–30.

    PubMed  CAS  Google Scholar 

  • Tanner M (1993) Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol 30:34–57.

    PubMed  CAS  Google Scholar 

  • Ursitti JA, Pumplin DW, Wade JB, Bloch RJ (1991) Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. Cell Motil Cytoskel 19:227–243.

    CAS  Google Scholar 

  • Vertessy BG, Steck TL (1989) Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. Biophys J 55:255–262.

    PubMed  CAS  Google Scholar 

  • von Lubitz E (1981) Sub-surface tubular system in the outer sensory cells of the rat cochlea. Cell Tissue Res 220:787–795.

    Google Scholar 

  • Walker RG, Hudspeth AJ, Gillespie PG (1993) Calmodulin and calmodulin-binding proteins in hair bundles. Proc Natl Acad Sci USA 90:2807–2811.

    PubMed  CAS  Google Scholar 

  • Wang DN, Kühlbrandt W, Sarabia VE, Reithmeier RAF (1993) Two-dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO J 12:2233–2239.

    PubMed  CAS  Google Scholar 

  • Xue S, Mountain DC, Hubbard AE (1993) Direct measurement of electrically-evoked basilar membrane motion. In: Duifuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 361–369.

    Google Scholar 

  • Yates GK, Kirk DL (1993) Electrically evoked travelling waves in the guinea pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 352–360.

    Google Scholar 

  • Zajic G, Schacht J (1991) Shape changes in isolated outer hair cells: measurements with attached microspheres. Hear Res 52:407–410.

    PubMed  CAS  Google Scholar 

  • Zenner H-P (1988) Motility of outer hair cells as an active, actin-mediated process. Acta Otorhinolaryngol 105:39–44.

    CAS  Google Scholar 

  • Zenner H-P, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 18:127–133.

    PubMed  CAS  Google Scholar 

  • Zenner H-P, Zimmermann R, Gitter AH (1988) Active movements of the cuticular plate induce sensory hair motion in mammalian outer hair cells. Hear Res 34:233–240.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holley, M.C. (1996). Outer Hair Cell Motility. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics