Skip to main content

Physiology of Mammalian Cochlear Hair Cells

  • Chapter
The Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

The scope of this chapter is to review what is currently known about the workings of the two types of auditory hair cells in the mammalian cochlea, the inner hair cells (IHCs) and outer hair cells (OHCs). Mammalian hair cells have for a long time been impenetrable to the electrophysiologist’s microelectrodes, necessitating the extrapolation of results from more easily accessible and less vulnerable hair cells of nonmammalian vertebrate preparations to explain mammalian cochlear physiology. To assess the validity of this approach, we need to consider first whether there are common elements shared by all vertebrate hair cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75:493–510.

    PubMed  CAS  Google Scholar 

  • Adrian ED (1931) The microphonic action of the cochlea: an interpretation of Weyer and Bray’s experiments. J Physiol 71:xxviii-xxix.

    Google Scholar 

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385:207–242.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Wu Y-C (1993) The effects of low calcium on the voltage-dependent conductances involved in tuning of turtle hair cells. J Physiol 470:109–126.

    PubMed  CAS  Google Scholar 

  • Ashmore JF (1988) What is the stimulus for outer hair cell motility? In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 42–47.

    Google Scholar 

  • Ashmore JF, Meech RW (1986) Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:361–372.

    Google Scholar 

  • Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131.

    PubMed  CAS  Google Scholar 

  • Ashmore JF, Kolston PJ, Mammano F (1993) Dissecting components of the outer hair cell feedback loop. In: Duifhuis H, Horst JW, Dijk P van, Netten SM van (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 151–158.

    Google Scholar 

  • Assad JA, Corey DP (1992) An active motor model for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309.

    PubMed  CAS  Google Scholar 

  • Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86:2918–2922.

    PubMed  CAS  Google Scholar 

  • Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331:211–230.

    PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol 354:625–646.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Elect Microsc 3:1401–1406.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, Ribaupierre Y de (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Canessa CM, Horisberger J-D, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1993) Longitudinal comparisons of IHC ac and do receptor potentials recorded from the guinea pig cochlea. Hear Res 68:107–114.

    PubMed  CAS  Google Scholar 

  • Cody AR, Russell IJ (1987) The responses of hair cells in the basal turn of the guinea-pig cochlea to tones. J Physiol 383:551–569.

    PubMed  CAS  Google Scholar 

  • Colamartino G, Menini A, Torre V (1991) Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J Physiol 440:189–206.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983a) Analysis of the microphonic potential of the bullfrog’s sacculus. J Neurosci 3:942–961.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983b) Kinetics of the receptor currents in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Kros CJ (1990) A fast calcium current with a rapidly inactivating component in isolated inner hair cells of the guinea-pig. J Physiol 420:90P.

    Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol 434:369–398.

    PubMed  CAS  Google Scholar 

  • Dallos P (1973) The auditory periphery. New York: Academic Press.

    Google Scholar 

  • Dallos P (1984) Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 14:281–291.

    PubMed  CAS  Google Scholar 

  • Dallos P (1985a) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608.

    PubMed  CAS  Google Scholar 

  • Dallos P (1985b) Membrane potential and response changes in mammalian cochlear hair cells during intracellular recording. J Neurosci 5:1609–1615.

    PubMed  CAS  Google Scholar 

  • Dallos P (1986) Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear Res 22:185–198.

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1989) Nonlinearities in cochlear receptor potentials and their origins. J Acoust Soc Am 86:1790–1796.

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1990) Effects of electrical polarization on inner hair cell receptor potentials. J Acoust Soc Am 87:1636–1647.

    PubMed  CAS  Google Scholar 

  • Dallos P, Cheatham MA (1992) Cochlear hair cell function reflected in intracellular recordings in vivo. In: Corey DP, Roper SD (eds) Sensory Transduction. New York: Rockefeller University Press, pp. 371–393.

    Google Scholar 

  • Dallos P, Santos-Sacchi J, Flock A (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584.

    PubMed  CAS  Google Scholar 

  • Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear res 60:89–102.

    PubMed  CAS  Google Scholar 

  • Denk W, Keolian RM, Webb WW (1992) Mechanical response of frog saccular hair bundles to the aminoglycoside block of mechanoelectrical transduction. J Neurophysiol 68:927–932.

    PubMed  CAS  Google Scholar 

  • Denk W, Holt JR, Shepherd GMG, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15:1311–1321.

    PubMed  CAS  Google Scholar 

  • Dreyer F (1990) Peptide toxins and potassium channels. Rev Physiol Biochem Pharmacol 115:93–136.

    PubMed  CAS  Google Scholar 

  • Dwyer TM, Adams DJ, Hille B (1980) The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol 75:469–492.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715.

    PubMed  CAS  Google Scholar 

  • Evans BN, Dallos P (1993a) Mechanomotility and ciliary stiffness change in cochlear outer hair cells. Abst Assoc Res Otolaryngol 16:116.

    Google Scholar 

  • Evans BN, Dallos P (1993b) Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc Natl Acad Sci USA 90:8347–8351.

    PubMed  CAS  Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287.

    PubMed  CAS  Google Scholar 

  • Evans EF (1989) Cochlear filtering: a view seen through the temporal discharge patterns of single cochlear nerve fibers. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Structure, Function and Models. New York: Plenum Press, pp. 241–248.

    Google Scholar 

  • Evans MG, Fuchs PA (1987) Tetrodotoxin-sensitive voltage-dependent sodium currents in hair cells from the alligator cochlea. Biophys J 52:649–652.

    PubMed  CAS  Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 229–263.

    Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J Physiol 331:577–597.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Crawford AC (1978) The coding of sound pressure and frequency in cochlear hair cells of the terrapin. Proc R Soc Lond B 203:209–218.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Crawford AC (1989) Mechano-electrical transduction in turtle hair cells. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Structure, Function and Models. New York: Plenum Press, pp. 99–105.

    Google Scholar 

  • Fettiplace R, Crawford AC, Evans MG (1992) The hair cell’s mechanoelectrical transducer channel. Ann NY Acad Sci 656:1–11.

    PubMed  CAS  Google Scholar 

  • Flock Ã…., Strelioff D (1984) Studies on hair cells in isolated coils from the guinea pig cochlea. Hear Res 15:11–18.

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser B (1963) A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J Physiol 169:424–430.

    PubMed  CAS  Google Scholar 

  • Frings S, Lynch JW, Lindemann B (1992) Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol 100:45–67.

    PubMed  CAS  Google Scholar 

  • Fuchs PA (1992) Ionic currents in cochlear hair cells. Prog Neurobiol 39:493–505.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1990) Potassium currents in hair cells isolated from the cochlea of the chick. J Physiol 429:529–551.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Sokolowski BHA (1990) The acquisition during development of Ca-activated potassium currents by cochlear hair cells of the chick. Proc R Soc Lond B 241:122–126.

    CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG, Murrow BW (1990) Calcium currents in hair cells isolated from the cochlea of the chick. J Physiol 429:553–568.

    PubMed  CAS  Google Scholar 

  • Furman RE, Tanaka JC (1990) Monovalent selectivity of the cyclic guanosine monophosphate-activated ion channel. J Gen Physiol 96:57–82.

    PubMed  CAS  Google Scholar 

  • Furness Dn, Richardson GP, Russell IJ (1989) Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res 38:95–110.

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Hudspeth AJ (1993) Adenine nucleoside diphosphates block adaptation of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 90:2710–2714.

    PubMed  CAS  Google Scholar 

  • Griguer C, Kros CJ, Sans A, Lehouelleur J (1993) Potassium currents in type II vestibular hair cells isolated from the guinea pig’s crista ampullaris. Pflügers Arch 425:344–352.

    PubMed  CAS  Google Scholar 

  • Gummer AW, Smolders JWT, Klinke R (1987) Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hear Res 29:63–92.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN, Benos DJ, Woodley JF, Barratt J (1992) Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc R Soc Lond B 248:215–221.

    CAS  Google Scholar 

  • Harris GG, Frishkopf LS, Flock Ã… (1970) Receptor potentials from hair cells of the lateral line. Science 167:76–79.

    PubMed  CAS  Google Scholar 

  • Haynes LW (1993) Mono-and divalent cation selectivity of catfish cone outer segment cGMP-gated channels. Biophys J 64:A133.

    Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472.

    PubMed  CAS  Google Scholar 

  • Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol 375:195–227.

    PubMed  CAS  Google Scholar 

  • Horowitz P, Hill W (1989) The Art of Electronics. 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea-pig cochlea. Proc R Soc Lond B 244:161–167.

    CAS  Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98.

    PubMed  CAS  Google Scholar 

  • Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B 249:265–273.

    CAS  Google Scholar 

  • Housley GD, Greenwood D, Mockett BG, Muñoz DJB, Thorne PR (1993) Differential actions of ATP-activated conductances in outer and inner hair cells isolated from the guinea-pig organ of Corti: a humoral purinergic influence on cochlear function. In: Duifhuis H, Horst JW, Dijk P van, Netten SM van (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 116–123.

    Google Scholar 

  • Howard J, Ashmore JF (1986) Stiffness of sensory hair bundles in the sacculus of the frog. Hear Res 23:93–104.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    PubMed  CAS  Google Scholar 

  • Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem 17:99–124.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the repsonse of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988a) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bull-frog Rana catesbeiana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988b) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog Rana catesbeiana. J Physiol 400:275–297.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992) Na+-Ca2+ exchange in the isolated cochlear outer hair cells of the guinea-pig studied by fluorescence image microscopy. Pflügers Arch 420:493–499.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci USA 90:1330–1334.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Markin VS, Hudspeth AJ (1993) Auditory illusions and the single hair cell. Nature 364:527–529.

    PubMed  CAS  Google Scholar 

  • Jörgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol 403:577–588.

    PubMed  Google Scholar 

  • Kakehata S, Nakagawa T, Takasaka T, Akaike N (1993) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J Physiol 463:227–244.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Watanaba T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibres in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kimitsuki T, Ohmori H (1992) The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. J Physiol 458:27–40.

    PubMed  CAS  Google Scholar 

  • Kleyman TR, Cragoe EJ (1988) Amiloride and its analogs as tools in the study of ion transport. J Memb Biol 105:1–21.

    CAS  Google Scholar 

  • Kolston PJ, Ashmore JF (1993) Action of ATP at the mechano-electric transducer site in outer hair cells isolated from the guinea-pig cochlea. J Physiol 459:428P.

    Google Scholar 

  • Kössl M, Richardson GP, Russell IJ (1990) Stereocilia bundle stiffness: effects of neomycin sulphate, A23187 and concanavalin A. Hear Res 44:217–230.

    PubMed  Google Scholar 

  • Koumi SI, Sato R, Horkawa T, Aramaki T, Okumura H (1994) Characterization of the calcium-sensitive voltage-gated delayed rectifier potassium channel in isolated guinea-pig hepatocytes. J Gen Physiol 104:147–171.

    PubMed  CAS  Google Scholar 

  • Kroese ABA, Das A, Hudspeth AJ (1989) Blockages of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37:203–218.

    PubMed  CAS  Google Scholar 

  • Kros CJ (1989) Membrane properties of inner hair cells isolated from the guinea-pig cochlea. PhD Thesis, University of Cambridge.

    Google Scholar 

  • Kros CJ (1990) Electrical properties of the basolateral membrane of hair cells—a review. In: Borsellino A, Cervetto L, Torre V (eds) Sensory Transduction. New York: Plenum Press, pp. 51–63.

    Google Scholar 

  • Kros CJ, Crawford AC (1988) Non-linear electrical properties of guinea-pig inner hair cells: a patch-clamp study. In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 27–31.

    Google Scholar 

  • Kros CJ, Crawford AC (1989) Components of the membrane current in guinea-pig inner hair cells. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Structure, Function and Models. New York: Plenum Press, pp. 189–195.

    Google Scholar 

  • Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291.

    PubMed  CAS  Google Scholar 

  • Kros CJ, Rüsch A, Russell IJ (1991) Differences between potassium currents of neonatal and mature mouse inner hair cells in vitro. J Physiol 434:51P.

    Google Scholar 

  • Kros CJ, Rüsch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured mouse cochlea. Proc R Soc Lond B 249:185–193.

    CAS  Google Scholar 

  • Kros CJ, Rüsch A, Lennan GWT, Richardson GP (1993a) Voltage dependence of transducer currents in outer hair cells of neonatal mice. In: Duifhuis H, Horst JW, Dijk P van, Netten SM van (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 141–150.

    Google Scholar 

  • Kros CJ, Rüsch A, Richardson GP, Russell IJ (1993b) Sodium and calcium currents in cultured cochlear hair cells of neonatal mice. J Physiol 473:231P.

    Google Scholar 

  • Kros CJ, Lennan GWT, Richardson GP (1995) Transducer currents and bundle movements in outer hair cells of neonatal mice. In: Flock A, Ottoson D, Ulfendahl M (eds) Acting Hearing. Oxford: Elsevier Science, pp. 113–125.

    Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1991) Amiloride block of the mechanosensitive cation channel in Xenopus oocytes. J Physiol 441:347–366.

    PubMed  CAS  Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1992) Structure-activity relations of amiloride and its analogues in blocking the mechanosensitive channel in Xenopus oocytes. Br J Pharmacol 106:283–286.

    PubMed  CAS  Google Scholar 

  • Lang DG, Correia MJ (1989) Studies of solitary semicicular canal hair cells in the adult pigeon. II. Voltage-dependent ionic conductances. J Neurophysiol 62:935–945.

    PubMed  CAS  Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage-and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NY-S (1978) Acoustic trauma in cats. Acta Otolaryngol Suppl 358:1–63.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146.

    PubMed  CAS  Google Scholar 

  • Lin X, Hume RI, Nuttall AL (1993) Voltage-dependent block by neomycin of the ATP-induced whole-cell current of guinea-pig outer hair cells. J Neurophysiol 70:1593–1605.

    PubMed  CAS  Google Scholar 

  • Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel: a new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318:95–99.

    PubMed  CAS  Google Scholar 

  • Lumpkin EA, Hudspeth AJ (1995) Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 92:10297–10301.

    PubMed  CAS  Google Scholar 

  • Mammano F, Kros CJ, Ashmore JF (1995) Patch clamped responses from outer hair cells in the intact adult organ of Corti. Pflügers Arch 430:745–750.

    PubMed  CAS  Google Scholar 

  • Menini A (1990) Currents carried by monovalent cations through cyclic GMPactivated channels in excised patches from salamander rods. J Physiol 424:167–185.

    PubMed  CAS  Google Scholar 

  • Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflügers Arch 407:577–588.

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T (1990) ATP-induced current in isolated outer hair cells of guinea-pig cochlea. J Neurophysiol 63:1068–1074.

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Kakehata S, Akaike N, Komune S, Takasaka T, Uemura T (1991) Calcium channel in isolated outer hair cells of guinea pig cochlea. Neurosci Lett 125:81–84.

    PubMed  CAS  Google Scholar 

  • Netten SM van, Kroese ABA (1987) Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line. Hear Res 29:55–62.

    PubMed  Google Scholar 

  • Nobile M, Carbone E, Lux HD, Zucker H (1990) Temperature sensitivity of Ca currents in chick sensory neurones. Pflügers Arch 415:658–663.

    PubMed  CAS  Google Scholar 

  • Nuttall AL (1985) Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig. J Acoust Soc Am 77:165–175.

    PubMed  CAS  Google Scholar 

  • Ohmori H (1984) Mechanoelectrical transducer has discrete conductances in the chick vestibular hair cell. Proc Natl Acad Sci USA 81:1888–1891.

    PubMed  CAS  Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217.

    PubMed  CAS  Google Scholar 

  • Olsen ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. J Acoust Soc Am 89:1262–1275.

    Google Scholar 

  • Palmer AR (1990) The representation of the spectra and fundamental frequencies of steady-state single-and double-vowel sounds in the temporal discharge patterns of guinea-pig cochlear-nerve fibres. J Acoust Soc Am 88:1412–1426.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Sellick PM (1983) A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. J Acoust Soc Am 74:1734–1741.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1993) A model for the mechanics of the stereociliar bundle on acousticolateral hair cells. Hear Res 68:159–172.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea-pig organ of Corti and their possible relation to sensory transduction. Hear Res 15:103–112.

    PubMed  CAS  Google Scholar 

  • Pickles JO, Osborne MP, Comis SD, Köppl C, Gleich O, Brix J, Manley GA (1989) Tip-link organization in relation to the structure and orientation of stereovillar bundles. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Structure, Function and Models. New York: Plenum Press, pp. 37–44.

    Google Scholar 

  • Prigioni I, Masetto S, Russo G, Taglietti V (1992) Calcium currents in solitary hair cells isolated from frog crista ampullaris. J Vest Res 2:31–39.

    CAS  Google Scholar 

  • Prosen CA, Petersen MR, Moody DB, Stebbins WC (1978) Auditory thresholds and kanamycin-induced hearing loss in the guinea pig assessed by a positive reinforcement procedure. J Acoust Soc Am 63:559–566.

    PubMed  CAS  Google Scholar 

  • Purves RD (1981) Microelectrode Methods for Intracellular Recording and lonophoresis. London: Academic Press.

    Google Scholar 

  • Richardson GP, Russell IJ, Wasserkort R, Hans M (1989) Aminoglycoside antibiotics and lectins cause irreversible increases in the stiffness of cochlear hair-cell stereocilia. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Structure, Function and Models. New York: Plenum Press, pp. 57–65.

    Google Scholar 

  • Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: transduction, tuning, and transmission in the inner ear. Annu Rev Cell Biol 4:63–92.

    PubMed  CAS  Google Scholar 

  • Romand R (1983) Development of the cochlea. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 47–88.

    Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729–749.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    PubMed  CAS  Google Scholar 

  • Rösch A, Kros CJ, Richardson GP, Russell IJ (1991) Potassium and calcium currents in outer hair cells in organotypic cultures of the neonatal mouse cochlea. J Physiol 434:52P.

    Google Scholar 

  • Rüsch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474:75–86.

    PubMed  Google Scholar 

  • Russell IJ (1983) Origin of the receptor potential in inner hair cells of the mammalian cochlea—evidence for Davis’ theory. Nature 301:334–336.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Kössl M (1991) The voltage responses of hair cells in the basal turn of the guinea-pig cochlea. J Physiol 435:493–511.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Kössl M (1992) Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization. Proc R Soc Lond B 247:97–105.

    CAS  Google Scholar 

  • Russell IJ, Richardson GP (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res 31:9–24.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1977) Tuning properties of the cochlear hair cells. Nature 267:858–860.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 338:179–206.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro. Hear Res 22:199–216.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Richardson GP, Cody AR (1986) Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 321:517–519.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Richardson GP, Kössl M (1989) The responses of cochlear hair cells to tonic displacements of the sensory hair bundle. Hear Res 43:55–70.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Kössl M, Richardson GP (1992) Nonlinear mechanical responses of mouse cochlear hair bundles. Proc R Soc Lond B 250:217–227.

    CAS  Google Scholar 

  • Sakmann B, Neher E (1995) Single-Channel Recording. 2nd ed. New York: Plenum Press.

    Google Scholar 

  • Santos-Sacchi J (1989) Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti. J Neurosci 9:2954–2962.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibers of the cat. J Physiol 347:685–696.

    PubMed  CAS  Google Scholar 

  • Smith PA, Ashcroft FM, Fewtrell CMS (1993) Permeation and gating properties of the L-type calcium channel in mouse pancreatic β cells. J Gen Physiol 101:767–797.

    PubMed  CAS  Google Scholar 

  • Smith PR, Benos DJ (1991) Epithelia Na+ channels. Annu Rev Physiol 53:509–530.

    PubMed  CAS  Google Scholar 

  • Sokolowski BHA, Stahl LM, Fuchs PA (1993) Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick. Dev Biol 155:134–146.

    PubMed  CAS  Google Scholar 

  • Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346–1358.

    PubMed  CAS  Google Scholar 

  • Stebbins WC (1983) The Acoustic Sense of Animals. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Steinacker A, Romero A (1991) Characterization of voltage-gated and calcium-activated potassium currents in toadfish saccular hair cells. Brain Res 556:22–32.

    PubMed  CAS  Google Scholar 

  • Strelioff D, Flock A (1984) Stiffness of sensory-cell hair bundles in the isolated guinea-pig cochlea. Hear Res 15:19–28.

    PubMed  CAS  Google Scholar 

  • Sugihara I, Furukawa T (1989) Morphological and functional aspects of two different types of hair cells in the goldfish sacculus. J Neurophysiol 62:1330–1343.

    PubMed  CAS  Google Scholar 

  • Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992) Membrane potential measurements in isolated outer hair cells of the guinea-pig cochlea using conventional microelectrodes. Hear Res 62:237–244.

    PubMed  CAS  Google Scholar 

  • Ulehlova L, Voldrich L, Janisch R (1987) Correlative study of sensory cell density and cochlear length in humans. Hear Res 28:149–152.

    PubMed  CAS  Google Scholar 

  • Walsh KB, Begenisich TB, Kass RS (1989) ß-Adrenergic modulation of cardiac ion channels. J Gen Physiol 93:841–854.

    PubMed  CAS  Google Scholar 

  • Weiss TF, Mulroy MJ, Altmann DW (1974) Intracellular responses to acoustic clicks in the inner ear of the alligator lizard. J Acoust Soc Am 55:606–619.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260.

    PubMed  CAS  Google Scholar 

  • Weyer EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci USA 16:344–350.

    Google Scholar 

  • Witt CM, Hu H-Y, Brownell WE, Bertrand D (1994) Physiologically silent sodium channels in mammalian outer hair cells. J Neurophysiol 72:1037–1040.

    PubMed  CAS  Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Molec Biol 63:131–158.

    CAS  Google Scholar 

  • Yau K-W, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photo-receptor cells. Annu Rev Neurosci 12:289–327.

    PubMed  CAS  Google Scholar 

  • Yellen G (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol 84:157–186.

    PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    PubMed  CAS  Google Scholar 

  • Zimmerman AL, Baylor DA (1992) Cation interactions with the cyclic GMPactivated channel of retinal rods from the tiger salamander. J Physiol 449:759–783.

    PubMed  CAS  Google Scholar 

  • Zufall F, Firestein S (1993) Divalent cations block the cyclic nucleotide-gated channel of olfactory receptor neurons. J Neurophysiol 69:1758–1768.

    PubMed  CAS  Google Scholar 

  • Zufall F, Firestein S, Shepherd GM (1991) Analysis of single nucleotide gated channels in olfactory receptor cells. J Neurosci 11:3573–3580.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Cefaratti LK (1989) Tectorial membrane II: Stiffness measurements in vivo. Hear Res 42:211–228.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kros, C.J. (1996). Physiology of Mammalian Cochlear Hair Cells. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics