Skip to main content

Neural Processing of Acoustic Signals

  • Chapter
Comparative Hearing: Insects

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

Like all sensory systems, auditory systems have been shaped by the stimuli that carry meaning for the animals they serve (see Hoy, Chapter 1; Michelsen, Chapter 2; Römer, Chapter 3; Robert and Hoy, Chapter 6; Barth, Chapter 7; Fullard, Chapter 8). It thus comes as no surprise that auditory neurons and neural circuits are specialized to detect and analyze those sounds that carry behaviorally important information. The strong effect of selective pressure is particularly evident among insects, where hearing has evolved independently many times (Fullard and Yack 1993; Hoy, Chapter 1), and often seems to be a “special-purpose” modality that serves restricted and obvious behavioral functions. Because of this close relationship between biological function and auditory neurophysiology, the first section of this chapter focuses on the behavioral functions of sound and on how biologically meaningful information is represented by the physical parameters of acoustic signals. Subsequent sections examine how this information is analyzed by the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins G, Pollack GS (1986) Age dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus. J Comp Neurol 243:527–534.

    PubMed  CAS  Google Scholar 

  • Atkins G, Pollack GS (1987a) Response properties of prothoracic, interganglionic, sound-activated interneurons in the cricket Teleogyyllus oceanicus. J Comp Physiol A 161:681–693.

    Google Scholar 

  • Atkins G, Pollack GS (1987b) Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets. J Comp Neurol 266:398–412.

    CAS  Google Scholar 

  • Atkins G, Ligman S, Burghardt F, Stout J (1984) Changes in phonotaxis by the female cricket after killing identified acoustic interneurons. J Comp Physiol A 154:795–804.

    Google Scholar 

  • Atkins G, Henley J, Handysides R, Stout J (1992) Evaluation of the behavioral roles of ascending auditory interneurons in calling song phonotaxis by the female cricket (Acheta domesticus). J Comp Physiol A 170:363–372.

    Google Scholar 

  • Bailey WJ, Robinson D (1971) Song as a possible isolating mechanism in the genus Homorocoryphus (Tettigonioidea, Orthoptera). Anim Behav 19:390–397.

    Google Scholar 

  • Bailey WJ, Thomson P (1977) Acoustic orientation in the cricket Teleogryllus oceanicus (Le Guillou). J Exp Biol 67:61–75.

    Google Scholar 

  • Balakrishnan R, Pollack GS (1996) Recognition of courtship song in the field cricket, Teleogryllus oceanicus. Anim Behav 51:353–366.

    Google Scholar 

  • Balakrishnan R, Pollack GS (1997) The role of antennal sensory cues in female responses to courting males in the cricket Teleogryllus oceanicus. J Exp Biol 200:511–522.

    PubMed  Google Scholar 

  • Boyan GS (1980) Auditory neurones in the brain of the cricket Gryllus bimaculatus (DeGeer). J Comp Physiol A 140:81–93.

    Google Scholar 

  • Boyan GS (1981) Two-tone suppression of an identified auditory neurone in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol A 144:117–125.

    Google Scholar 

  • Boyan GS, Altman JS (1985) The suboesophageal ganglion: a “missing link” in the audiory pathway of the locust. J Comp Physiol A 156:413–428.

    Google Scholar 

  • Boyan GS, Williams JLD (1982) Auditory neurones in the brain of the cricket Gryllus bimaculatus (DeGeer): ascending interneurones. J Insect Physiol 28:493–501

    Google Scholar 

  • Boyd P, Lewis B (1983) Peripheral auditory directionality in the cricket (Gryllus campestris L., Teleogryllus oceanicus Le Guillou). J Comp Physiol A 153:523–532.

    Google Scholar 

  • Boyd P, Kühne R, Silver S, Lewis B (1984) Two-tone suppression and song coding by ascending neurones in the cricket Gryllus campestris L. J Comp Physiol A 154:523–532.

    Google Scholar 

  • Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol A 157:619–629.

    PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1989) Integration of ultrasound and flight inputs on descending neurons in the cricket brain. J Exp Biol 145:157–171.

    PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1990) Ultrasound sensitive neurons in the cricket brain. J Comp Physiol A 166:651–662.

    PubMed  CAS  Google Scholar 

  • Cade W (1979) The evolution of alternative male reproductive strategies in field crickets. In: Blum MS, Blum NA (eds) Sexual Selection and Reproductive Competition in Insects. New York: Academic Press, pp. 343–379.

    Google Scholar 

  • Campbell DJ, Shipp E (1979) Regulation of spatial pattern in populations of the field cricket Teleogryllus commodus (Walker). Z Tierpsychol 51:260–268.

    Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Ann Rev Neurosci 16:223–243.

    PubMed  CAS  Google Scholar 

  • Casaday GB, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus: physiological and anatomical properties. J Comp Physiol 121:1–13

    Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979.

    Google Scholar 

  • Dirsh VM (1975) A preliminary revision of the families and subfamilies of Acridoidea (Orthoptera, Insecta). Bull Br Mus (Nat Hist) Entomol 10:349–419.

    Google Scholar 

  • Dobler S, Heller K-G, Helversen O von (1994) Song pattern recognition and an auditory time window in the female bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:67–74.

    Google Scholar 

  • Doherty JA (1985a) Trade-off phenomena in calling song recognition and phonotaxis in the cricket, Gryllus bimaculatus (Orthoptera, Gryllidae). J Comp Physiol A 156:787–801.

    Google Scholar 

  • Doherty JA (1985b) Temperature coupling and “trade-off” phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J Exp Biol 114:17–35.

    Google Scholar 

  • Doherty JA (1991) Song recognition and localization in the phonotaxis behavior of the field cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). J Comp Physiol A 168:213–222.

    Google Scholar 

  • Doherty JA, Callos JD (1991) Acoustic communication in the trilling field cricket, Gryllus rubens (Orthoptera: Gryllidae). J Insect Behav 4:67–82.

    Google Scholar 

  • Doherty JA, Hoy RR (1985) The auditory behavior of crickets: some views of genetic coupling, song recognition, and predator detection. Q Rev Biol 60:457–472.

    Google Scholar 

  • Doolan JM, Pollack GS (1985) Phonotactic specificity of the cricket Teleogryllus oceanicus: intensity-dependent selectivity for temporal parameters of the stimulus. J Comp Physiol A 157:223–233.

    Google Scholar 

  • Doolan JM, Young D (1989) Relative importance of song parameters during flight phonotaxis and courtship in the bladder cicada Cystosoma saundersii. J Exp Biol 141:113–131.

    Google Scholar 

  • Elsner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355.

    Google Scholar 

  • Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: physiology and central projections. J Comp Physiol 137:27–38.

    Google Scholar 

  • Ewing AW (1983) Functional aspects of Drosophila courtship. Biol Rev 58:275–292.

    Google Scholar 

  • Feng AS, Hall JC, Gooler DM (1990) Neural basis of sound pattern recognition in anurans. Prog Neurobiol 34:313–329.

    PubMed  CAS  Google Scholar 

  • Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8:248–252.

    PubMed  CAS  Google Scholar 

  • Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Ann Rev Neurosci 19:341–377.

    PubMed  CAS  Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Philos Trans R Soc Lond B Biol Sci 243:75–94.

    Google Scholar 

  • Halex H, Kaiser W, Kalmring K (1988) Projection areas and branching patterns of the tympanal receptor cells in migratory locusts, Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 253:517–528.

    PubMed  CAS  Google Scholar 

  • Hardt M, Watson AHD (1994) Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs. J Comp Neurol 345:481–495.

    PubMed  CAS  Google Scholar 

  • Heller K-G, Helvesen D von (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window. Behav Ecol Sociobiol 18:189–198.

    Google Scholar 

  • Helversen D von (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthotpera, Acrididae). J Comp Physiol 81:381–422.

    Google Scholar 

  • Helversen D von (1984) Parallel processing in auditory pattern recognition and directional analysis by the grasshopper Chorhtippus biguttulus L. (Acrididae). J Comp Physiol A 154:837–846.

    Google Scholar 

  • Helversen D von (1993) “Absolute steepness” of ramps as an essential cue for auditory pattern recognition by a grasshopper (Orthoptera; Acrididae; Chorthippus biguttulus L.). J Comp Physiol A 172:633–639.

    Google Scholar 

  • Helversen D von, Helversen O von (1983) Species recognition and acoustic localization in acridid grasshoppers: a behavioral approach. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 95–107.

    Google Scholar 

  • Helversen D von, Helversen O von (1990) Pattern recognition and directional analysis: routes and stations of information flow in the CNS of a grasshopper. In: Cribakin FG, Wiese K, Popoav AV (eds) Sensory Systems and Communication in Arthropods. Basel: Birhäuser Verlag, pp. 209–216.

    Google Scholar 

  • Helversen D von, Helversen O von (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural Basis of Behavioural Adaptations. Stuttgart: Gustav Fischer Verlag, pp. 253–284.

    Google Scholar 

  • Helversen D von, Helversen O von (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774.

    Google Scholar 

  • Helversen D von, Helversen O von (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180:373–386.

    Google Scholar 

  • Helversen D von, Rheinlaender J (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioural approach. J Comp Physiol A 162:333–340.

    Google Scholar 

  • Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163:135–143.

    PubMed  CAS  Google Scholar 

  • Hennig RM, Weber T (1997) Filtering of temporal parameters of the calling song by cricket females of two closely related species: a behavioral analysis. J Comp Physiol A 180:621–630.

    Google Scholar 

  • Hill KG (1974) Carrier frequency as a factor in phonotactic behaviour of female crickets (Teleogryllus commodus). J Comp Physiol 93:7–18.

    Google Scholar 

  • Horseman G, Huber F (1994a). Sound localisation in crickets. I. Contralateral inhibition of an ascending auditory interneuron (AN1) in the cricket Gryllus bimaculatus. J Comp Physiol A 174:389–398.

    Google Scholar 

  • Horseman G, Huber F (1994b) Sound localisation in crickets. II. Modeling the role of a simple neural network in the prothoracic ganglion. J Comp Physiol A 175:399–413.

    Google Scholar 

  • Hoy RR (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 115–129.

    Google Scholar 

  • Hutchings M, Lewis B (1981) Response properties of primary auditory fibers in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol 143:129–134.

    Google Scholar 

  • Imaizumi K, Pollack GS (1996) Anatomy and physiology of auditory receptors of the cricket Teleogryllus oceanicus. Soc Neurosci Abstr 22:1082.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Physiology. New York: Springer-Verlag, pp. 153–231.

    Google Scholar 

  • Kalmring K, Lewis B, Eichendorf A (1978) The physiological characteristics of the primary sensory neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettigonioidae). J Comp Physiol 127:109–121.

    Google Scholar 

  • Lakes R, Schikorski T (1990) Neuroanatomy of tettigoniids. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: Biology, Systematics and Evolution. Berlin: Springer-Verlag, pp. 166–190.

    Google Scholar 

  • Latimer W, Lewis DB (1986) Song harmonic content as a parameter determining acoustic orientation behaviour in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol A 158:583–591.

    Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169:507–514.

    PubMed  CAS  Google Scholar 

  • Libersat F, Murray JA, Hoy RR (1994) Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus: a neuroethological analysis. J Comp Physiol A 174:485–494.

    PubMed  CAS  Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus DeGeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315.

    Google Scholar 

  • Michelsen A (1966) Pitch discrimination in the locust ear: observations on single sense cells. J Insect Physiol 12:1119–1131.

    PubMed  CAS  Google Scholar 

  • Michelsen A (1971a) The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z Vergl Physiologie 71:49–62.

    Google Scholar 

  • Michelsen A (1971b) The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z Vergl Physiologie 71:63–101.

    Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 321–331.

    Google Scholar 

  • Miller LA, Olsen J (1979) Avoidance behavior in green lacewings. I. Behavior of free flying green lacewings to hunting bats and ultrasound. J Comp Physiol 131:113–120.

    Google Scholar 

  • Moiseff A, Hoy RR (1983) Sensitivity to ultrasound in an identified auditory inter-neuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol 152:155–167.

    Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056.

    PubMed  CAS  Google Scholar 

  • Mörchen A, Rheinlaender J, Schwartzkopff J (1978) Latency shift in insect auditory nerve fibers. Naturwissenschaften 65:656–657.

    Google Scholar 

  • Nocke H (1972) Physiological aspects of sound communication in crickets (Gryllus campestris L.). J Comp Physiol 80:141–162.

    Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994.

    PubMed  CAS  Google Scholar 

  • Nolen TG, Hoy RR (1986a) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. J Comp Physiol A 159:423–439.

    CAS  Google Scholar 

  • Nolen TG, Hoy RR (1986b) Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. J Comp Physiol A 159:441–456.

    CAS  Google Scholar 

  • Nolen TG, Hoy RR (1987) Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior. J Neurosci 7:2081–2096.

    PubMed  CAS  Google Scholar 

  • Oldfield BP (1980) Accuracy of orientation in female crickets. Teleogryllus oceanicus (Gryllidae): dependence on song spectrum. J Comp Physiol 141:93–99.

    Google Scholar 

  • Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469.

    Google Scholar 

  • Oldfield BP (1983) Central projections of primary auditory fibres in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol A 151:389–395.

    Google Scholar 

  • Oldfield BP (1984) Physiology of auditory receptors in two species of Tettigoniidae (Orthoptera: Ensifera): alternative tonotopic organisations of the auditory organ. J Comp Physiol A 155:689–696.

    Google Scholar 

  • Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hearing Res 17:27–35.

    CAS  Google Scholar 

  • Oldfield BP, Hill KG (1983) The physiology of ascending auditory interneurons in the tettigoniid Caedicia simplex (Orthoptera: Ensifera): response properties and a model of integration in the afferent auditory pathway. J Comp Physiol A 152:495–508.

    Google Scholar 

  • Oldfield BP, Kleindienst HU, Huber F (1986) Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus DeGeer. J Comp Physiol A 159:457–464.

    PubMed  CAS  Google Scholar 

  • Otte D (1992) Evolution of cricket songs. J Orthopt Res 1:24–46.

    Google Scholar 

  • Pollack GS (1982) Sexual differences in cricket calling song recognition. J Comp Physiol 146:217–221.

    Google Scholar 

  • Pollack GS (1984) Ultrasound-sensitive neurons descending in the thoracic nervous system of the cricket Teleogryllus oceanicus. Can J Zool 62:555–562.

    Google Scholar 

  • Pollack GS (1986) Discrimination of calling song models by the cricket, Teleogryllus oceanicus: the influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behavior. J Comp Physiol A 158:549–561.

    Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639.

    PubMed  CAS  Google Scholar 

  • Pollack GS (1994) Synaptic inputs to the omega neuron of the cricket Teleogryllus oceanicus: differences in EPSP waveforms evoked by low and high sound frequencies. J Comp Physiol A 174:83–89.

    Google Scholar 

  • Pollack GS, El-Feghaly E (1993) Calling song recognition in the cricket Teleogryllus oceanicus: comparison of the effects of stimulus intensity and sound spectrum on selectivity for temporal pattern. J Comp Physiol A 171:759–765.

    Google Scholar 

  • Pollack GS, Faulkes Z (1998) Representation of behaviorally relevant sound frequencies by auditory receptors in the cricket Teleogryllus oceanicus. J Exp Biol 201:155–163.

    PubMed  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432.

    PubMed  CAS  Google Scholar 

  • Pollack GS, Hoy RR (1981a) Phonotaxis to individual rhythmic components of a complex cricket calling song. J Comp Physiol A 144:367–373.

    Google Scholar 

  • Pollack GS, Hoy RR (1981b) Phonotaxis in flying crickets: neural correlates. J Insect Physiol 27:41–45.

    Google Scholar 

  • Pollack GS, Plourde N (1982) Directionality of acoustic orientation in flying crickets. J Comp Physiol 146:207–215.

    Google Scholar 

  • Pollack GS, Huber F, Weber T (1984) Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J Comp Physiol A 154:13–26.

    Google Scholar 

  • Popov AV, Markovich AM (1982) Auditory interneurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus. II. A high-frequency ascending neuron (HF1AN). J Comp Physiol A 146:351–359.

    Google Scholar 

  • Popov AV, Shuvalov VF (1977) Phonotactic behaviour of crickets. J Comp Physiol 119:111–126.

    Google Scholar 

  • Popov AV, Shuvalov VF, Svetogorskaya ID, Markovich AM (1974) Acoustic behavior and auditory system in insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rheinisch-Westfäl Akad Wiss 53:281–306.

    Google Scholar 

  • Popov AV, Markovich AM, Andjan AS (1978) Auditory interneurons in the prothoracic ganglion of the cricket Gryllus bimaculatus deGeer. I. The large segmental auditory neuron (LSAN). J Comp Physiol 126:183–192.

    Google Scholar 

  • Regen J (1913) Über die Anlocking des Weibchens von Gryllus campestris durch telephonische übertragung der Stridulation des Männchens. Pflügers Arch Eur J Physiol 155:193–200.

    Google Scholar 

  • Rheinlaender J, Mörchen A (1979) “Time-intensity trading” in locust auditory interneurones. Nature 281:672–674.

    Google Scholar 

  • Robert D (1989) The auditory behaviour of flying locusts. J Exp Biol 147:279–301.

    Google Scholar 

  • Robinson DJ (1980) Acoustic communication between the sexes of the bush cricket, Leptophyes punctatissima. Physiol Entomol 5:183–189.

    Google Scholar 

  • Robinson D, Rheinlaender J, Hartley JC (1986) Temporal parameters of male-female sound communication in Leptophyes punctatissima. Physiol Entomol 11:317–323.

    Google Scholar 

  • Roeder KD (1967) Turning tendency of moths exposed to ultrasound while in stationary flight. J Insect Physiol 13:873–888.

    Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera). J Comp Physiol 109:101–122.

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigoni viridissima. Nature 306:60–62.

    Google Scholar 

  • Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42.

    Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Philos Trans R Soc Lond B 340:179–185.

    Google Scholar 

  • Römer H, Bailey WJ (1986) Insect hearing in the field. II. Male spacing behaviour and correlated acoustic cues in the bushcricket Mygalopsis marki. J Comp Physiol A 159:627–638.

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262.

    Google Scholar 

  • Römer H, Rheinlaender J, Dronse R (1981) Intracellular studies on auditory processing in the metathoracic ganglion of the locust. J Comp Physiol 144:305–312.

    Google Scholar 

  • Römer H, Seikowski U (1985) Responses to model songs of auditory neurons in the thoracic ganglia and brain of the locust. J Comp Physiol A 156:845–860.

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera. J Comp Neurol 275:201–215.

    PubMed  Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper’s song by an auditory interneuron. J Comp Physiol A 163:517–523.

    Google Scholar 

  • Ronacher B, Helversen D von, Helversen O von (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374.

    Google Scholar 

  • Rose G, Capranica RR (1983) Temporal selectivity in the central auditory system of the leopard frog. Science 219:1087–1089.

    PubMed  CAS  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185.

    Google Scholar 

  • Schildberger K (1994) The auditory pathway of crickets: adaptation for intraspecific acoustic communication. In: Schildberger K, Elsner N (eds) Neural Basis of Behavioural Adaptations. Stuttgart: Gustav Fischer Verlag, pp. 210–225.

    Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis. I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163:621–631.

    Google Scholar 

  • Schildberger K, Kleindienst HU (1989) Sound localization in intact and one-eared crickets: comparison of neuronal properties with open-loop and closed-loop behaviour. J Comp Physiol A 165:615–626.

    Google Scholar 

  • Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol A 148:431–444.

    Google Scholar 

  • Schul J (1997) Neuronal basis of phonotactic behaviour in Tettigonia viridissima: processing of behaviourally relevant signals by auditory afferents and thoracic interneurons. J Comp Physiol A 180:573–583.

    Google Scholar 

  • Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. J Comp Physiol 132:47–54.

    Google Scholar 

  • Schumacher R (1979) Zur funcktionellen Morphologie des auditiven Systems der Laubheuschrecken (Orthoptera: Tettigonioidea). Entomol Gen 5:321–356.

    Google Scholar 

  • Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292.

    PubMed  CAS  Google Scholar 

  • Sharov AG (1971) Phylogeny of the Orthopteroidae. Jerusalem: Israel Program for Scientific Translations.

    Google Scholar 

  • Shaw SR (1994) Detection of airborne sound by a cockroach “vibration detector”: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47.

    PubMed  Google Scholar 

  • Sobel EC, Tank DW (1994) In vivo Caz+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826.

    PubMed  CAS  Google Scholar 

  • Spangler HG (1988a) Hearing in tiger beetles (Cicindelidae). Physiol Entomol 13:447–452.

    Google Scholar 

  • Spangler HG (1988b) Moth hearing, defense, and communication. Ann Rev Entomol 33:59–81.

    Google Scholar 

  • Spooner JD (1968) Pair-forming acoustic systems of phaneropterine katydids (Orthoptera, Tettigoniidae). Anim Behav 16:197–212.

    PubMed  CAS  Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: localization depends on recognition of the calling song pattern. J Comp Physiol A. 165:165–177.

    Google Scholar 

  • Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99:279–314.

    Google Scholar 

  • Stout JF, DeHaan CH, McGhee RW (1983) Attractiveness of the male Acheta domesticus calling song to females. I. Dependence on each of the calling song features. J Comp Physiol 108:1–9.

    Google Scholar 

  • Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricketphysiological characterization and complete staining of auditory receptor cells. Naturwissenschaften 83:81–84.

    CAS  Google Scholar 

  • Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101.

    PubMed  Google Scholar 

  • Stumpner A, Ronacher B (1991a) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I. Morphological and physiological characterization. J Exp Biol 158:391–410.

    Google Scholar 

  • Stumpner A, Ronacher B (1991b) Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. II. Processing of temporal patterns of the song of the male. J Exp Biol 158:411–430.

    Google Scholar 

  • Suga N, Katsuki Y (1961) Central mechanism of hearing in insects. J Exp Biol 38:545–558.

    Google Scholar 

  • Thiele D, Bailey WJ (1980) The function of sound in male spacing behaviour in bushcrickets (Tettigoniidae, Orthoptera). Aust J Ecol 5:275–286.

    Google Scholar 

  • Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket. II. Simplicity of calling-song recognition in Gryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol A 146:361–378.

    Google Scholar 

  • Walker TJ (1957) Specificity in the response of female tree crickets (Orthoptera: Gryllidae: Oecanthinae) to calling songs of the males. Ann Entomol Soc Am 50:626–636.

    Google Scholar 

  • Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J Comp Physiol 127:11–28.

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173.

    Google Scholar 

  • Wohlers DW, Huber F (1985) Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket, Gryllus campestris L. Cell Tissue Res 239:555–565.

    Google Scholar 

  • Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544.

    PubMed  CAS  Google Scholar 

  • Yager DD (1996) Serially homologous ears perform frequency range fractionation in the praying mantis, Creobroter (Mantodea, Hymenopodidae). J Comp Physiol A 178:463–475.

    PubMed  CAS  Google Scholar 

  • Yager DD, May ML, Fenton MB (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis, Paresphendale agrionina (Gerst.). I. Free-flight. J Exp Biol 152:17–39.

    PubMed  CAS  Google Scholar 

  • Young D (1980) The calling song of the bladder cicada, Cystosoma saundersii: a computer analysis. J Exp Biol 88:407–411.

    Google Scholar 

  • Young D, Ball EE (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). Z Zellforsch 147:293–312.

    PubMed  CAS  Google Scholar 

  • Zaretsky MD, Eible E (1978) Carrier frequency-sensitive primary neurons and their anatomical projection to the central nervous system. J Insect Physiol 24:87–95.

    Google Scholar 

  • Zhantiev RD (1971) Frequency characteristics of tympanal organs in grasshoppers (Orthoptera, Tettigoniidae). Zool Zh 50:507–514.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollack, G.S. (1998). Neural Processing of Acoustic Signals. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics